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MACHINE LEARNING AND
ALGORITHMIC GAME THEORY GROUP

Expertise in:
« Reinforcement learning lm

« Algorithmic game theory
* Online learning
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ML cube’

Innovative startup (founded in 2020) www.mlcube.com
Bridging the expertise of academics to the industrial world

Developing Al projects for the industrial and web world

Developing ML platform
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CLASSICAL ML

« YA computer program is said fo learn from experience E with respect to
some class of tasks T and performance measure P if its performance at tasks
in T, as measured by P, improves with experience E”

—T Program
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SEQUENTIAL DECISION PROBLEM

* In some setting we are required to take a decision

« Therefore, the task is to learn a policy or strategy
* As a new data is coming we want to update our knowledge and act

accordingly
' '\
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HOW MAB ARE BORN

Classical Clinical Trial: red and blue pills
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Use statistics to infer which treatment is the most promising one




SEQUENTIAL PROCESS

« Design a clinical frial to minimize the number of suboptimal tfreatments
provided to patients

RS B2 X ES S

« We call the loss incurred due to lack of information regret



MULTI ARMED BANDIT: ACOMMON
SETTING TO MANY PROBLEMS

Slot selection
problem

Restaurant
selection
problem

Dialogue
model
selection




MEAN IS NOT ENOUGH

« Assume value 1 for success and O for failure
« The empirical mean of the blue treatment is zero

R f-%

« On the following patients we would only select the red treatment
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 Using this approach, we would have the same results in terms of regret as the

classical clinical trial

« We need 1o solve the so called:

exploration vs. exploitation (diemma

/ \

Evaluate and refine the Using the currently
currently unexplored available information
options to gain a profit
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OPTIMISM IN THE FACE OF
UNCERTAINTY
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« We need to take info account also the uncertainty of the estimates
« "L'otfimismo ¢ il profumo della vita!l" (Tonino Guerra)
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UCB1 ALGORITHM

Given a set of arms (options) A = {a4, ..., ax}

¥ ; .
N i Lag = ai o

Compute the empinc MEan ———— R

Ni(a;)

Compute the uncertainty bound ee—)

Select the arm with the largest UCE  ee—) RS CAUDERACHY
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Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning,
47(2), 235-256.
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THEORETICAL GUARANTEE

 Llower Bound

lim Lo >-

a;|A;>0

« Upper bound UCBI




PRACTICAL PROBLEMS

* It is a good alternative to A/B testing in general
« Allows mulfiple options
* Minimize the loss
« Does not exclude completely the use of any option

« Even if this framework si formal and elegant, it hardly generalizes to real
problems (too simple)



PRICING PROBLEM

 Problem formulation:

« Given an inventory of products
« Select the most profitable price for each product / A

« Characteristics: profit

1. Large inventory
2. Continuous choice
3. Non-stationarity 0

Vv

margin
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1. LARGE INVENTORY

X

Hilellgle Pricing .
single clusters of
items items

Trovo, F., Paladino, S., Simone, P., Restelli, M., & Gatti, N. (2017, May). Risk-averse trees for learning from logged bandit feedback.
In 2017 International Joint Conference on Neural Networks (IJCNN) (pp. 976-983). IEEE.
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2. CONTINUOUS CHOICE

« Gaussian Process
« Selection of the next arm to play according to UCB provided by GPs

® Observed Arms
—— Predicted Rewards
95% conf interval

Srinivas, N., Krause, A., Kakade, S., & Seeger, M. (2010). Gaussian Process Optimization in the Bandit Setting: No Regret and
Experimental Design. In Proceedings of the 27th International Conference on Machine Learning.



3. NON-STATIONARITY

« Apply a sliding window to the system

(o o o oo
RY M'
« Passive approach

« Active approaches aim at identifying a change in the distribution of the
rewards

Trovo, F., Paladino, S., Restelli, M., & Gatti, N. (2020). Sliding-window thompson sampling for non-stationary settings. Journal
of Artificial Intelligence Research, 68, 311-364.
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ADVERTISING PROBLEM
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* Problem formulation:
« Given a set of ads, select bid and budget

DVERTISING MO

« Assuring that the overall budget is no more than a given daily one

Ad,y o
Ad, |y
Ad,

DEL

Unfeasible solution

\ Feasible solufion
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COMBINATORIAL BANDITS




CMAB FOR ADVERTISING

« Choose using Upper Confidence Bounds

t

Nuara, A., Trovo, F., Gatti, N., & Restelli, M. (2018). Online Joint Bid/Budget Optimization of Pay-per-click Advertising Campaigns.
In 16th European Conference on Multi-Agent Systems (pp. 1-15).



CONCLUSION

 MAB algorithms are only nice and elegant tools to study theoretically
* |ts extensions are used in many applicative fields

Future direction:s:

« Fairness in MAB

* Dynamics in MAB

« Domain specific MAB



PART I
REINFORCEMENT LEARNING

Alberto Maria Metelli
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ORIGINS OF REINFORCEMENT
LEARNING

« RL originates in behavioral rHpesier
psychology Lights

«a consequence applied that will
stfrengthen an organism'’s future
behavior whenever that behavior is
preceded by a specific anfecedent
stimulusy

N
Le\;er

 Skinner box — Operant conditioning Electric grid

Food diépenser

Burrhus F Skinner. The behavior of organisms: an experimental analysis. 1938.
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AGENT AND ENVIRONMENT

Action a

/\ At each step:

S

The agent observes the state s
The agent plays action a ~ 11(* | s)

The environment fransitions to the
next state s' ~ P(* | s,0)

The environment emits a scalar
reward

\ / Martin L Puterman. Markov decision processes: discrete stochastic dynamic

programming. John Wiley & Sons, 2014.

Next State s’

Richard S Sutton and Andrew G Barto. Reinforcement learning: An infroduction.
MIT press, 2018.



HOW DOES RL

DIFFERS FROM
MAB?<

« Same goal: select actions to maximize cumulative rewards but ...

... actions may have long-term consequences
... reward may be delayed

... It may be better to sacrifice immediate reward 1o gain more long-term
reward




WHEN TO USE RL INSTEA

D OF

AUTOMATIC CONITROL?

« When the environment dynamics is unknown

« When the environment dynamics is known but too complex to be effectively
used
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OPTIMALITY CRITERIA

Goal of an RL agent: maximize the (expected discounted) cumulative reward

«meglio un uovo
oggi che una
gallina domanien




OPTIMAL VALUE FUNCTION AND
OPTIMAL POLICY

Maximum cumulative reward from (s,q)
Bellman equation

e / * / /
Q*(s,a) = +y E P(s Is,a)gf}g;fQ (s’,a")
s'es
transition  cumulative reward
model form next state on
Optimal policy

m"(s) = argmax 40" (s, a)



Reward Rofiaryction EXAM P L E




LEARNING IN TABULAR PROBLEMS:
Q-LEARNING

Problem: learn the optimal value function from samples

Initialize Q

Observe the initial state s,

For each step 1=0, 1, ...
Select action a, with an exploration policy
Take action a, and observe reward r, and next state s,,,
Update Qs ay) « (1-p) Q(s,ay) + B ]

How to select the exploration policye
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EXPLORATION VS EXPLOITATION

All actions should be tried sufficiently
often!

exploration-exploitation dilemma

Cost of exploration (simulation vs
real system)

Examples: epsilon
greedy, Boltzmann, UCB
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LEARNING WITH CONTINUOUS
STATES

« What if the state space is infinite?
* Function approximation

Q(ss as; 0) | *ﬂ‘—' Q)

« Minimize the loss via gradient descent
over 0 ( )

o (065,000 - )
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STEPS TOWARDS DEEP RL

mein (Q(Sb ag; 6) — ( ))2

Convolution Convolution Fully connected Fully connected
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Not exactly supervised learning...
« Samples are dependent
« Learning stability

And some other friks... — (Deep Q-
Networks)

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., ... & Hassabis, D. (2015). Human-level control through deep
reinforcement learning. nature, 518(7540), 529-533.



Name This Game
Krull

James Bond
Tennis
Pong

X
Battle Zone
Wi
Chopper C

Amidar
Alien
Venture

Double Dunk
Bowling

2539%
1707%
1327%
598%
508%
449%
419%
400%
294%
278%
217%
246%
232%
224%
145%
143%
132%
121%
119%
12%
102%
102%
100%
97%
93%
92%.
79%
8%

T6% 1

69%

600

1,000

Below human

level

DQN ON ATARI
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Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G.,
... & Hassabis, D. (2015). Human-level control through deep reinforcement
learning. nature, 518(7540), 529-533.
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TOWARDS REAL-WORLD
APPLICATIONS

« Safe Behavior and Safe Learning

« Multi-objective tasks

 Interpretability

« Learn by imitation




SAFE REINFORCEMENT LEARNING

Learn a "safe" behavior Learn/explore "safely”

Performance

15 20
Policy updates

14:00

Garcia, J., & Fernandez, F. (2015). A comprehensive survey on safe Papini, Matteo, Andrea Battistello, and Marcello Restelli.
reinforcement learning. Journal of Machine Learning "Balancing learning speed and stability in policy gradient via
Research, 16(1), 1437-1480. adaptive exploration." AISTATS 2020.



RL FOR AUTONOMOUS DRIVING

Goal: display human-like behavior

Two driving scenarios
« Highway driving — multiobjective
« Urban (intersection, roundabaout)

Sensor inputs, discrete actions

Interpretability — parametric rule-
based policy

Likmeta, A., Metelli, A. M., Tirinzoni, A., Giol, R., Restelli, M., & Romano, D. (2020). Combining reinforcement learning with rule-based controllers
for transparent and general decision-making in autonomous driving. Robotics and Autonomous Systems, 131, 2020.
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RL FOR DRIVING ON A TRACK

« Goal: minimize the lap time

« Human expert demonstration
collected on a simulator

» Objectives
* mimic the expert — imitation
learning
* improve the expert's policy —
planning




D BEYON

* Lifelong/Conftinual RL
» Meta RL RN Gar g

« Multi-Agent RL
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