FROM MAB TO RL AND BEYOND

Francesco Trovò and Alberto Maria Metelli

Machine Learning Modena Meetup 27th January 2021

SHORT BIOS

DIPARTIMENTO DI ELETTRONICA INFORMAZIONE E BIOINGEGNERIA

Assistant professor Research interest in online learning Course in Al @uniBG Research assistant Research interest in reinforcement learning Oral @NeurIPS 2018

MACHINE LEARNING AND ALGORITHMIC GAME THEORY GROUP

Expertise in:

- Reinforcement learning
- Algorithmic game theory
- Online learning

341 + Articoli scientifici pubblicati

Progetti industriali

www.mlcube.com

- Innovative startup (founded in 2020)
- Bridging the expertise of academics to the industrial world
- Developing AI projects for the industrial and web world
- Developing ML platform

PART I MULTI-ARMED BANDITS

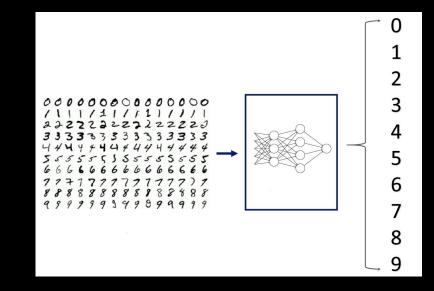
Francesco Trovò

CLASSICAL ML

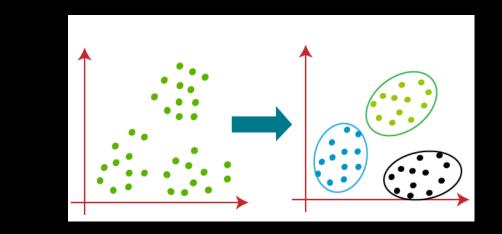
 "A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P if its performance at tasks in T, as measured by P, improves with experience E"

OUTPUT

Prediction

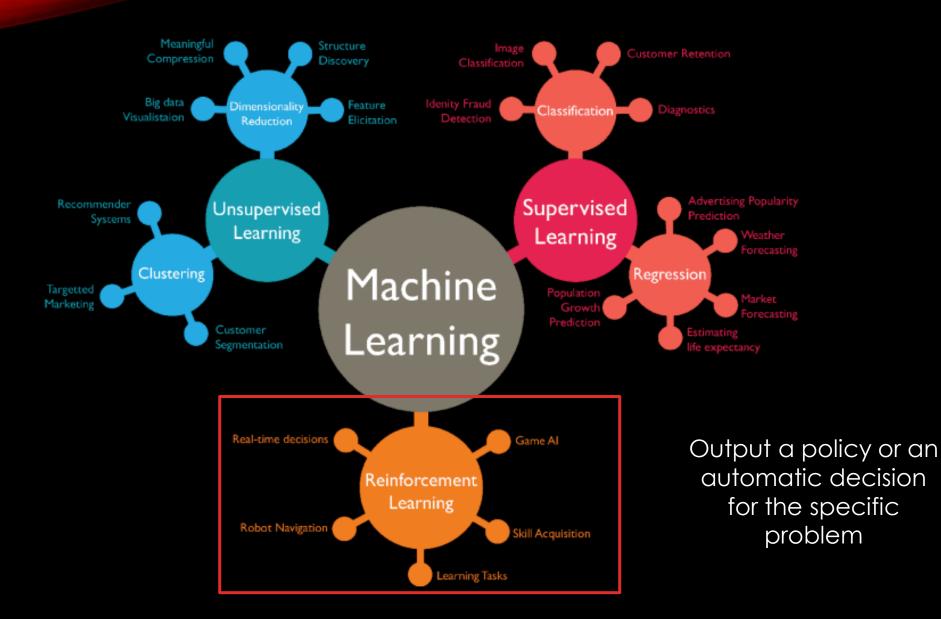


or Structure in the data



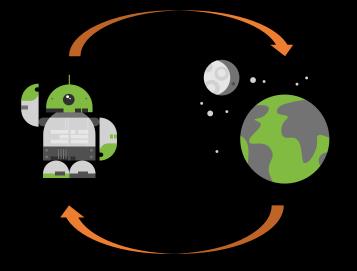
Supervised

vs Unsupervised



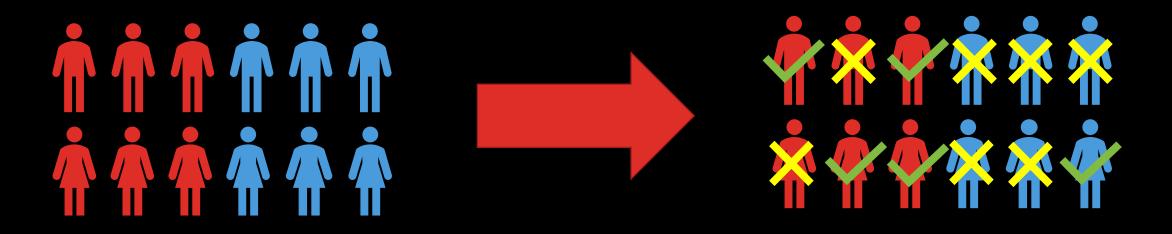
SEQUENTIAL DECISION PROBLEM

- In some setting we are required to take a decision
- Therefore, the task is to learn a policy or strategy
- As a new data is coming we want to update our knowledge and act accordingly



HOW MAB ARE BORN

Classical Clinical Trial: red and blue pills



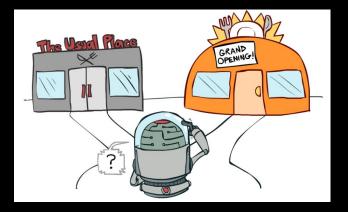
Use statistics to infer which treatment is the most promising one

SEQUENTIAL PROCESS

 Design a clinical trial to minimize the number of suboptimal treatments provided to patients

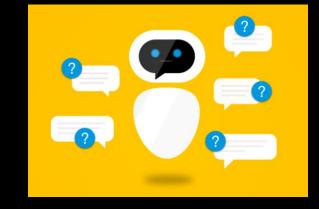
• We call the loss incurred due to lack of information regret

MULTI ARMED BANDIT: ACOMMON SETTING TO MANY PROBLEMS



Slot selection problem





Dialogue model selection

Restaurant selection problem

MEAN IS NOT ENOUGH

- Assume value 1 for success and 0 for failure
- The empirical mean of the blue treatment is zero

• On the following patients we would only select the red treatment

WANDERING AROUND IS NOT HEALTHY

- Using this approach, we would have the same results in terms of regret as the classical clinical trial
- We need to solve the so called:

exploration vs. exploitation (dilemma)

Evaluate and refine the currently unexplored options

Using the currently available information to gain a profit

OPTIMISM IN THE FACE OF UNCERTAINTY

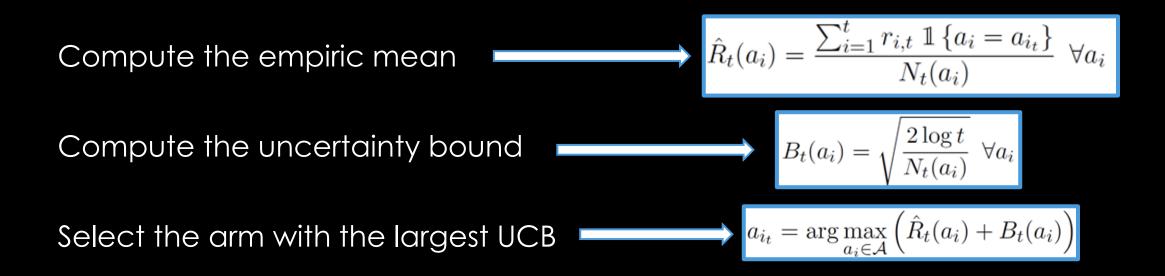
Setting 2

Setting 1

- We need to take into account also the uncertainty of the estimates
- "L'ottimismo è il profumo della vita!" (Tonino Guerra)

UCB1 ALGORITHM

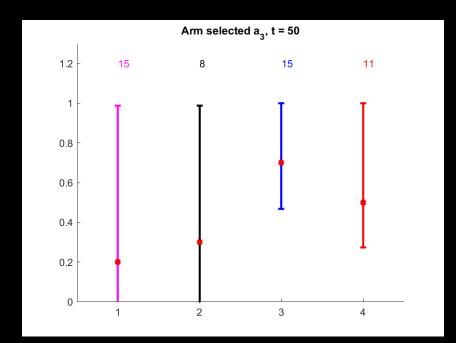
Given a set of arms (options) $A = \{a_1, \dots, a_K\}$



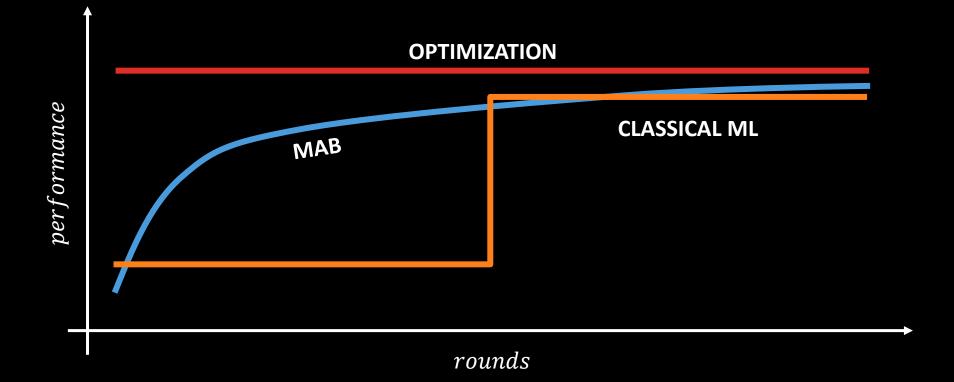
Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. *Machine learning*, 47(2), 235-256.

EXECUTION EXAMPLE

• A = $\{a_1, a_2, a_3, a_4\}$



SEQUENTIAL APPROACH ADVANTAGES



THEORETICAL GUARANTEE

• Lower Bound

$$\lim_{T \to \infty} L_T \ge \log T \sum_{a_i \mid \Delta_i > 0} \frac{\Delta_i}{KL(\mathcal{R}(a_i), \mathcal{R}(a^*))}$$

• Upper bound UCB1

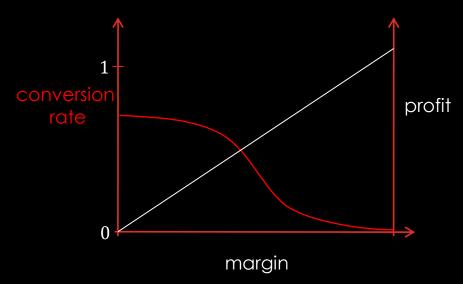
$$L_T \le 8 \log T \sum_{i \mid \Delta_i > 0} \frac{1}{\Delta_i} + \left(1 + \frac{\pi^2}{3}\right)$$

PRACTICAL PROBLEMS

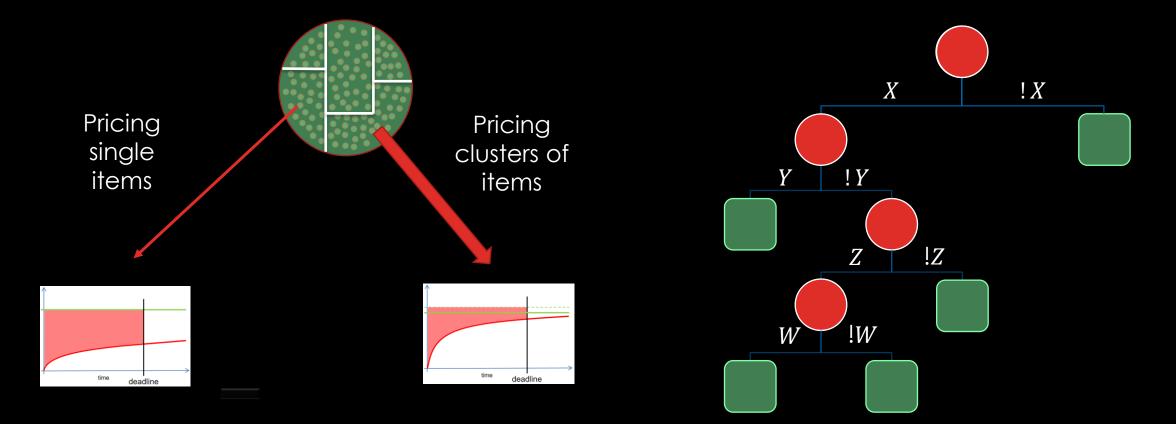
- It is a good alternative to A/B testing in general
 - Allows multiple options
 - Minimize the loss
 - Does not exclude completely the use of any option
- Even if this framework si formal and elegant, it hardly generalizes to real problems (too simple)

PRICING PROBLEM

- Problem formulation:
 - Given an inventory of products
 - Select the most profitable price for each product
- Characteristics:
 - 1. Large inventory
 - 2. Continuous choice
 - 3. Non-stationarity



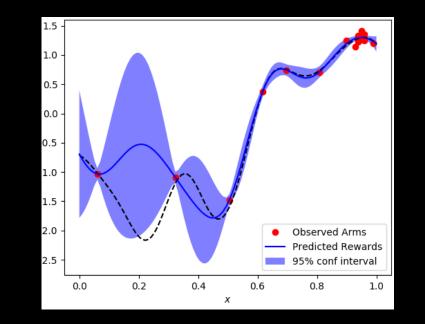
1. LARGE INVENTORY



Trovò, F., Paladino, S., Simone, P., Restelli, M., & Gatti, N. (2017, May). Risk-averse trees for learning from logged bandit feedback. In 2017 International Joint Conference on Neural Networks (IJCNN) (pp. 976-983). IEEE.

2. CONTINUOUS CHOICE

- Gaussian Process
- Selection of the next arm to play according to UCB provided by GPs



Srinivas, N., Krause, A., Kakade, S., & Seeger, M. (2010). Gaussian Process Optimization in the Bandit Setting: No Regret and Experimental Design. In Proceedings of the 27th International Conference on Machine Learning.

3. NON-STATIONARITY

• Apply a sliding window to the system

- Passive approach
- Active approaches aim at identifying a change in the distribution of the rewards

Trovo, F., Paladino, S., Restelli, M., & Gatti, N. (2020). Sliding-window thompson sampling for non-stationary settings. Journal of Artificial Intelligence Research, 68, 311-364.

ADVERTISING PROBLEM

 Ad_1

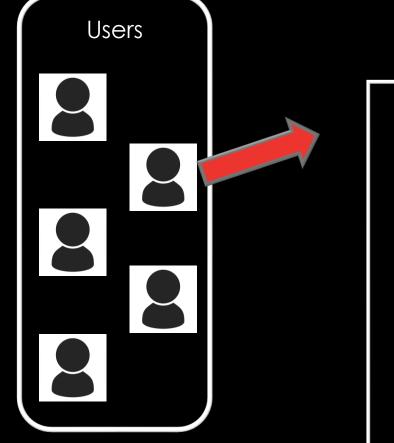
 Ad_2

 Ad_3

 Ad_4

 Ad_5

 Ad_6

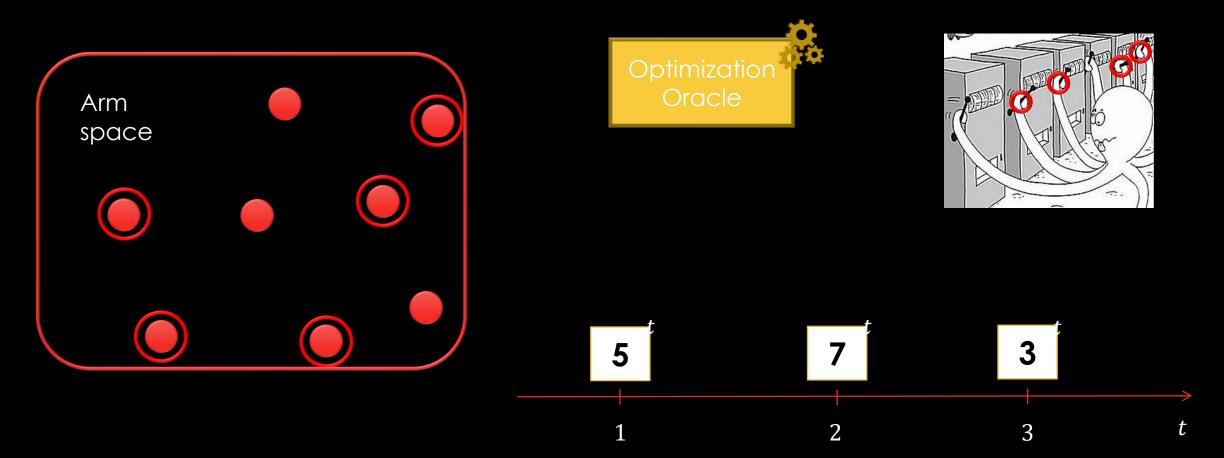


Search Engine	Media
$\begin{array}{c} C \\ Ad_4 \\ Ad_1 \\ Ad_6 \\ Ad_5 \end{array}$	Agency

ADVERTISING MODEL

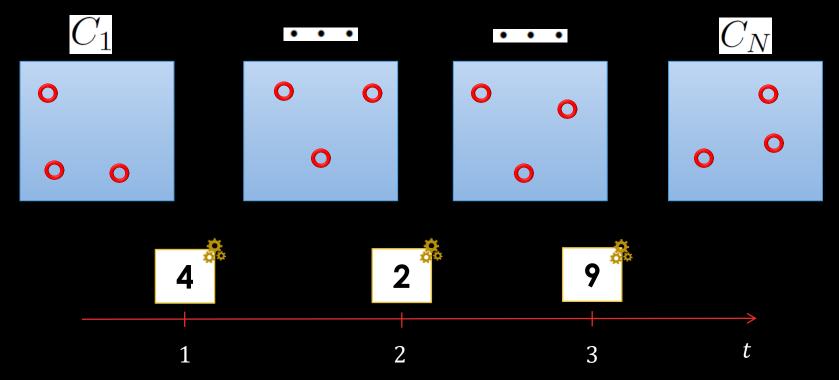
- Problem formulation:
 - Given a set of ads, select bid and budget
 - Assuring that the overall budget is no more than a given daily one

COMBINATORIAL BANDITS



CMAB FOR ADVERTISING

Choose using Upper Confidence Bounds



Nuara, A., Trovo, F., Gatti, N., & Restelli, M. (2018). Online Joint Bid/Budget Optimization of Pay-per-click Advertising Campaigns. In 16th European Conference on Multi-Agent Systems (pp. 1-15).

CONCLUSION

- MAB algorithms are only nice and elegant tools to study theoretically
- Its extensions are used in many applicative fields

Future directions:

- Fairness in MAB
- Dynamics in MAB
- Domain specific MAB

PART II REINFORCEMENT LEARNING

Alberto Maria Metelli

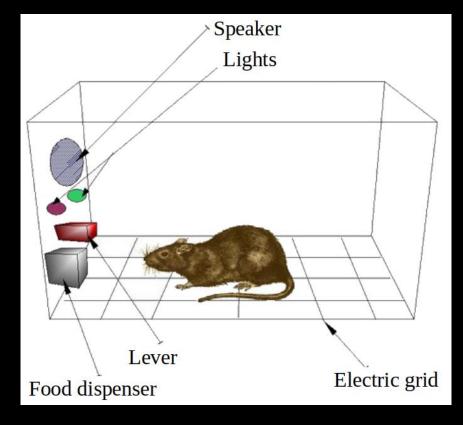
ORIGINS OF REINFORCEMENT LEARNING

 RL originates in behavioral psychology

«a consequence applied that will strengthen an organism's future behavior whenever that behavior is preceded by a specific antecedent stimulus»

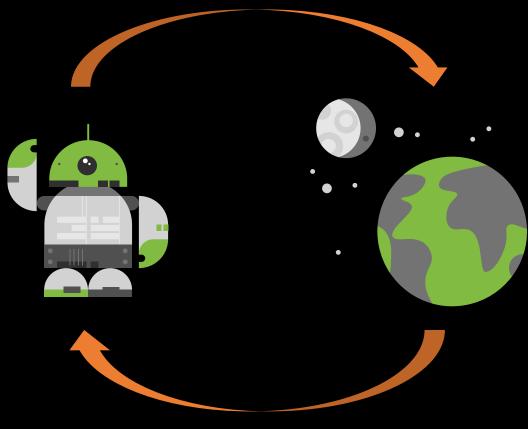
• Skinner box \rightarrow Operant conditioning

Burrhus F Skinner. The behavior of organisms: an experimental analysis. 1938.



AGENT AND ENVIRONMENT

Action a



Next State s' Reward r At each step:

- The agent observes the state s
- The agent plays **action** $a \sim \pi(\bullet | s)$
- The environment transitions to the next state s' ~ P(• | s,a)
- The environment emits a scalar reward r = R(s,a)

Martin L Puterman. Markov decision processes: discrete stochastic dynamic programming. John Wiley & Sons, 2014.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

HOW DOES RL DIFFERS FROM MAB?

- Same goal: select actions to maximize cumulative rewards but ...
- ... actions may have long-term consequences
- ... reward may be **delayed**
- ... it may be better to sacrifice immediate reward to gain more long-term reward

WHEN TO USE RL INSTEAD OF AUTOMATIC CONTROL?

- When the environment dynamics is **unknown**
- When the environment dynamics is known but too complex to be effectively used

OPTIMALITY CRITERIA

Goal of an RL agent: maximize the (expected discounted) cumulative reward

 $\gamma \approx 0$

«meglio un uovo oggi che una gallina domani?»

γ≈ i

OPTIMAL VALUE FUNCTION AND OPTIMAL POLICY

- Maximum cumulative reward from (s,a)
- Bellman equation

$$Q^{*}(s,a) = r(s,a) + \gamma \sum_{\substack{s' \in S}} P(s'|s,a) \max_{\substack{a' \in A}} Q^{*}(s',a')$$

instantaneous
reward transition cumulative reward
form next state on

• **Optimal** policy

$$\pi^*(s) = \operatorname{argmax}_{a \in A} Q^*(s, a)$$

EXAMPLE

1.00 - 0.88

Refiervation

Reward

LEARNING IN TABULAR PROBLEMS: Q-LEARNING

• **Problem**: learn the optimal value function from samples

Initialize Q

Observe the initial state s_0

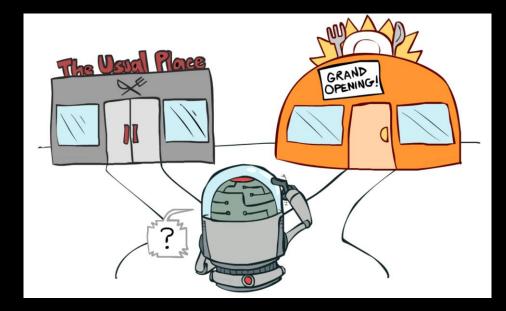
For each step t=0, 1, ...

Select action a_t with an exploration policy Take action a_t and observe reward r_t and next state s_{t+1} Update $Q(s_t, a_t) \leftarrow (1-\beta) Q(s_t, a_t) + \beta[r_t + \gamma \max_a Q(s_{t+1}, a)]$

• How to select the exploration policy?

EXPLORATION VS EXPLOITATION

- All actions should be tried sufficiently often!
- exploration-exploitation dilemma
- Cost of exploration (simulation vs real system)
- **Examples**: epsilon greedy, Boltzmann, UCB



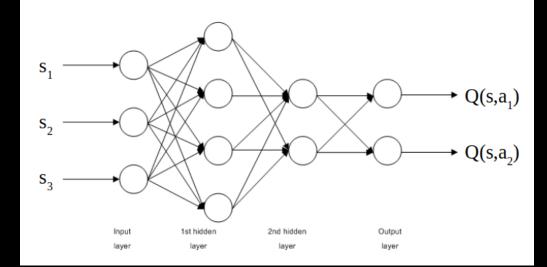
LEARNING WITH CONTINUOUS STATES

- What if the state space is infinite?
- Function approximation

 $Q(s_t, a_t; \theta)$

 Minimize the loss via gradient descent over θ (not working well...)

$$\min_{\theta} \left(Q(s_t, a_t; \theta) - \left(r_t + \gamma \max_{a \in A} Q(s_{t+1}, a; \theta) \right) \right)^2$$



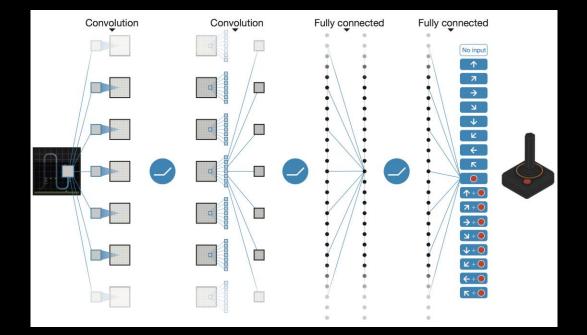
STEPS TOWARDS DEEP RL

$$\min_{\theta} \left(Q(s_t, a_t; \theta) - \left(r_t + \gamma \max_{a \in A} Q(s_{t+1}, a; \theta) \right) \right)^2$$

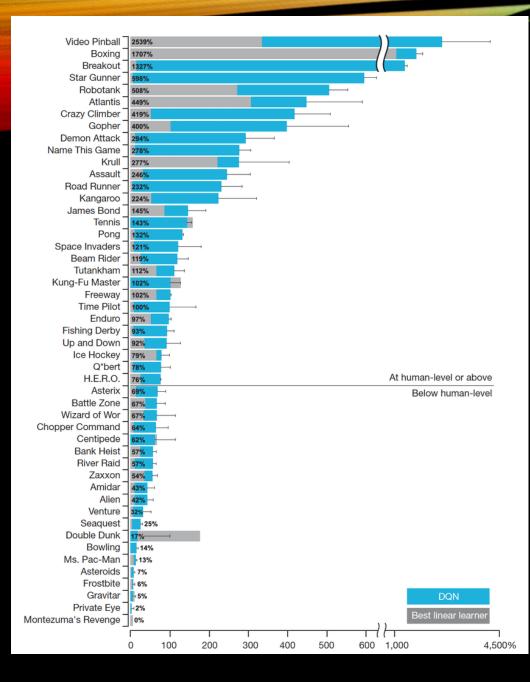
Not exactly **supervised learning**...

- Samples are dependent
- Learning stability

And some other triks... \rightarrow DQN (Deep Q-Networks)



Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., ... & Hassabis, D. (2015). Human-level control through deep reinforcement learning. nature, 518(7540), 529-533.



DQN ON ATARI

ACTIVISION

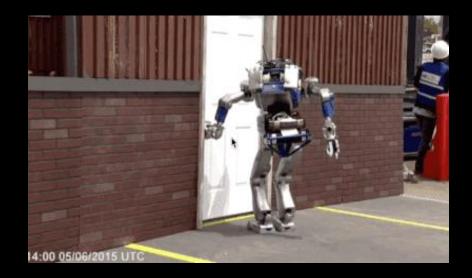
Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., ... & Hassabis, D. (2015). Human-level control through deep reinforcement learning. nature, 518(7540), 529-533.

TOWARDS REAL-WORLD APPLICATIONS

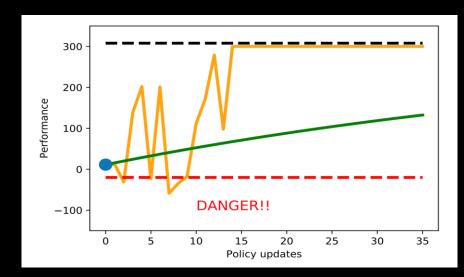
- Safe Behavior and Safe Learning
- Multi-objective tasks
- Interpretability
- Learn by imitation

SAFE REINFORCEMENT LEARNING

Learn a "safe" behavior



Learn/explore "safely"

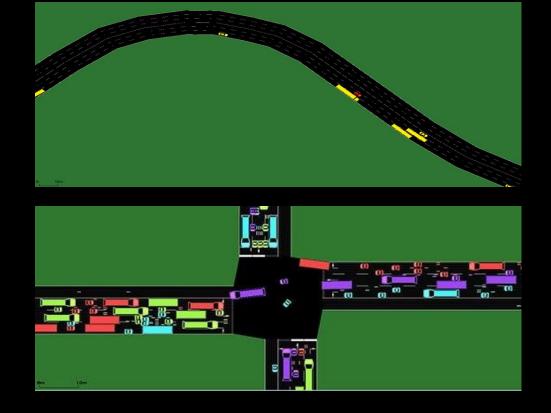


Garcia, J., & Fernández, F. (2015). A comprehensive survey on safe reinforcement learning. Journal of Machine Learning Research, 16(1), 1437-1480. Papini, Matteo, Andrea Battistello, and Marcello Restelli. "Balancing learning speed and stability in policy gradient via adaptive exploration." AISTATS 2020.

RL FOR AUTONOMOUS DRIVING

- Goal: display human-like behavior
- Two driving scenarios

 - Urban (intersection, roundabaout)
- Sensor inputs, discrete actions
- Interpretability → parametric rulebased policy



Likmeta, A., Metelli, A. M., Tirinzoni, A., Giol, R., Restelli, M., & Romano, D. (2020). Combining reinforcement learning with rule-based controllers for transparent and general decision-making in autonomous driving. *Robotics and Autonomous Systems*, 131, 2020.

RL FOR DRIVING ON A TRACK

- Goal: minimize the lap time
- Human expert demonstration collected on a simulator
- Objectives
 - mimic the expert → imitation learning
 - improve the expert's policy → planning

... AND BEYOND

- Lifelong/Continual RL
- Meta RL
- Multi-Agent RL

DIPARTIMENTO DI ELETTRONICA INFORMAZIONE E BIOINGEGNERIA

THANK YOU!

Francesco Trovò francesco1.trovo@polimi.it Alberto Maria Metelli albertomaria.metelli@polimi.it