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Short Bio

• PhD @DEIB in 2015

• Working @AirLab since 2015

• Assistant Professor @DEIB since 2020

Scientific interests:

• Multi-armed bandit algorithms

• Internet economic scenarios

• Health scenarios
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Lecture Overview

Online Learning

Binary prediction Space

Expert Learning

Continuous action space

Discrete action space

Infinite Number of Experts
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Online Learning
Model and Regret
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General Framework

Model

Environment

Prediction

Input/Feedback

The environment is changing 
or adversarial

Required to handle streaming 
data

• We need to learn

• We need to adapt
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at each round 𝑡

we generate a prediction ො𝑦𝑡

the environment chooses 𝑦𝑡

we suffer a loss of 𝑙( ො𝑦𝑡 , 𝑦𝑡)

we might get feedback 𝑥𝑡

we update the model we use for 

prediction

Online Learning Framework

Prediction ො𝑦𝑡

Feedback 𝑥𝑡
Loss 𝑙( ො𝑦𝑡, 𝑦𝑡)

Model

Environment
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Examples

• What will be the rain precipitation next month?

• What will be the price of this stock tomorrow?

• How many iPad will be sold during the next quarter?

• How many contacts will have this webpage in the next hour?

Commonly the prediction also corresponds to an action or decision to be 
performed at a specific time
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Weather Prediction

Website providing weather forecasts for tomorrow:

• We are no expert in meteorology

• We can look the to other forecasting services and choose among them

We can look at the results of all the forecasting services a posteriori of the 
selection

Objective:

We would like to be as good as the best expert
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Weather Prediction as an Online Learning 
Problem

Forecast ො𝑦𝑡

Experts’ Errors 𝑥𝑡
Prediction Error 𝑙( ො𝑦𝑡, 𝑦𝑡)

Model

Environment
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Pricing Problem

• You have a new product

• You do not know the optimal price (price providing the largest 
revenue)

• Ask for a market study

• Rely on historical information (e.g., NERDs salary)

• Try to learn the price without losing too much money

We have a set of options 𝐷 = {1$, 10$ 50$ 100$ 500$ 799$ 2000$}

maximize the reward per round ො𝑦 ⋅ 𝜇

Each time you select a suboptimal price you lose some money

Each customer will provide you with a feedback about a single price
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Pricing as an Online Learning Problem

Price ො𝑦𝑡

Revenue 𝑟 ො𝑦𝑡, 𝑦𝑡
No information on other prices 𝑥𝑡

Model

Environment

𝑟 ො𝑦𝑡, 𝑦𝑡 = 1 − 𝑙( ො𝑦𝑡, 𝑦𝑡)
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More Complex Pricing Problem

You have a catalog of products

You want to set a price for each one of 
them

You do not want to waste time in 
estimating the price for each one 
product

You need to learn a more general rule 
determining the price given the product 
characteristics
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Pricing as an Online Learning Problem

Price ො𝑦𝑡

Revenue 𝑟( ො𝑦𝑡, 𝑦𝑡)
Next item to sell 𝑥𝑡+1

Model

Environment

𝑟 ො𝑦𝑡, 𝑦𝑡 = 1 − 𝑙( ො𝑦𝑡, 𝑦𝑡)
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Online Learning Problems in Your Research

Do you think that some of the problems in your research area can be 
modeled as Online Learning ones?

Keep this question in mind during the entire course length
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Online Learning vs. Classical Machine Learning

• We cannot ensure that real processes are fully stochastic

• We cannot measure expected performances

• Data are coming in a sequence (stream)

• The training and testing phases are rarely separated in real-world 
problems

• Massive datasets are usually provided as a stream

• We have some spatial and computational constraints
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Online Learning vs. Learning in NSE

• Online Learning does not require a statistical characterization of the 
process

• Provides strong theoretical results vs. practical approach

• Starting with no information on the system vs. requires an initial model

This requires to study of simple models and, only after that, their 
extension to more complex scenarios
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Online Learning vs. Reinforcement Learning

Online is more like a meta-approach

Some RL algorithms are Online Learning algorithms too (e.g., Q-learning)

Some Online Learning algorithms have been developed for specific RL 
scenarios (e.g., UCB1)

RL usually has some statistical assumptions on the reward (or loss) and on 
the evolution of the process

Online Learning also handles data generated from an opponent (game 
theoretical approach)
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Algorithms Evaluation

We cannot use concepts like estimation error, accuracy, precision, and 
recall

Regret 𝑅𝑇(𝐴): loss of the designed algorithm w.r.t. a clairvoyant (optimal) 
choice among the ones in a given set

MACHINE LEARNINGMACHINE LEARNING

OPTIMIZATION

𝑇

p
er

fo
rm

an
ce
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Regret Definition
We want to compare our algorithm with a baseline:

The definition of the clairvoyant algorithm might change depending on the 
setting:

• Best prediction 𝑦𝑡
∗ = min

𝑦 ∈𝐶
σ𝑡=1
𝑇 𝑙 𝑦, 𝑦𝑡

• Best constant average prediction 𝑦𝑡
∗ = min

𝑦
σ𝑡=1
𝑇 𝐸[𝑙 𝑦, 𝑦𝑡 ]

Definition: Regret

Given an algorithm 𝐴, selecting a prediction ො𝑦𝑡 at round 𝑡, and a clairvoyant 
algorithm 𝐴∗, selecting a prediction 𝑦𝑡

∗ at round 𝑡, the Regret of 𝐴 over a time 
horizon of 𝑇 rounds is:

𝑅𝑇 𝐴 = 

𝑡=1

𝑇

[𝑙 ො𝑦𝑡, 𝑦𝑡 − 𝑙 𝑦𝑡
∗, 𝑦𝑡 ]
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No-Regret Algorithms
We are interested in algorithms which provides a regret which, 
asymptotically, is sublinear in the time horizon 𝑇

This way we are assured to have a vanishing regret as the time horizon 
progresses

As a byproduct we are also converging to the optimal solution

Definition:

An algorithm 𝐴 is said to be no-regret if:

lim
𝑇 →+∞

𝑅𝑇 𝐴

𝑇
= 0
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Different Online Learning Problems

• Expert learning

Loss for all the possible choices 
𝑥𝑡 = {𝑙 𝑝, 𝑦𝑡 , ∀𝑝 ∈ 𝐷}

• Multi-Armed Bandit (MAB)

No feedback 𝑥𝑡 = ()

• Partial Monitoring

• …

Model

Environment

Prediction ෝ𝑦𝑡

Feedback 𝒙𝒕, 
Loss 𝑙(𝑝𝑡, 𝑦𝑡)
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The Prediction Game

Choose the following elements:

• the outcome space 𝑌

• the decision space 𝐷

• the performance function 𝑙( ො𝑦, 𝑦)

At each round 𝑡

the environment chooses 𝑦𝑡 ∈ 𝑌 and the learner chooses ො𝑦𝑡 ∈ 𝐷

the learner suffers a loss 𝑙( ො𝑦𝑡, 𝑦𝑡)

the environment reveals 𝒚𝒕
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Binary Prediction Space
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Example: Heads or Tails?

A game in which we can choose heads or tails, but we do not know if the coin is fair 
and if changes over time

We can ask an audience for advice

Among the audience, we have a hidden superhero with the power of predicting the 
future (only 30 sec ahead), but we do not know who he/she is
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Binary Prediction

Simple case: we want to predict a string of bits:

• the outcome space 𝑌 = {0, 1}

• the decision space 𝐷 = {0, 1}

• the performance function 𝑙 ො𝑦, 𝑦 = 1{ො𝑦 ≠ 𝑦}

No assumption on the distribution in the outcome space and its variation over time

We rely on the information provided by 𝑁 experts

Each expert generates a prediction 𝑓𝑖,𝑡 ∈ 𝐷 (𝑖 ∈ {1,…𝑁})
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Single Perfect Expert

Assume to have one of the experts which predicts perfectly the sequence:

∃𝑖, ∀𝑡, 𝑙 𝑓𝑖,𝑡 , 𝑦𝑡 = 0

Halving algorithm:

initialize the experts’ weights 𝑤𝑖,𝑡 = 1

at each round 𝑡

we collect the experts’ predictions 𝑓𝑖,𝑡 for the experts with 𝑤𝑖,𝑡 = 1

predict ො𝑦𝑡 = 1 if the majority of them predicts so, ෝ𝑦𝑡 = 0, otherwise

observe 𝑦𝑡

set 𝑤𝑖,𝑡 = 0 for each expert s.t. 𝑓𝑖,𝑡 ≠ 𝑦𝑡
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Analysis of the Halving Algorithm

Proof:

Define 𝑊𝑡 = σ𝑖𝑤𝑖,𝑡

At 𝑡 = 0 we have 𝑚 = 0 and 𝑊0 = 𝑁

At each mistake we have 𝑊𝑚 ≤
𝑊𝑚−1

2

Recursively we have 𝑊𝑚 ≤
𝑊0

2𝑚

Since at least one expert is perfect we have 𝑊𝑚 ≥ 1

Finally, 
𝑁

2𝑚
≥ 1 ⇒ 𝑚 ≤ ⌊log2𝑁⌋

Theorem

The Halving algorithm applied to a binary prediction problem with 𝑁 experts makes 
at most 𝑚 ≤ ⌊log 2𝑁⌋ mistakes if at least one of the expert is perfect
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Imperfect Experts

If no expert is perfect, we want to relate the number of mistakes made 𝑚 with the 
ones made by the best expert 𝑚∗

We cannon set a weight to zero for a single error → we shrink it by a factor 𝛽

Weighted Halving algorithm:

initialize the experts’ weights 𝑤𝑖,𝑡 = 1

at each round 𝑡

we collect the experts’ predictions 𝑓𝑖,𝑡

predict ො𝑦𝑡 according to the weighted majority

observe 𝑦𝑡

set 𝑤𝑖,𝑡 ← 𝛽𝑤𝑖,𝑡 for each expert s.t. 𝑓𝑖,𝑡 ≠ 𝑦𝑡
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Analysis of the Weighted Halving Algorithm

Proof:

At 𝑡 = 0 we have 𝑚 = 0 and 𝑊0 = 𝑁

At each mistake we have 𝑊𝑚 ≤
𝑊𝑚−1

2
+ 𝛽

𝑊𝑚−1

2
= (1 + 𝛽)

𝑊𝑚−1

2

Recursively we have 𝑊𝑚 ≤ 1 + 𝛽 𝑚 𝑊0

2𝑚

Since at least one expert made at most 𝑚∗ mistakes we have 𝑊𝑚 ≥ 𝛽𝑚
∗

Finally, 
𝑁 1+𝛽 𝑚

2𝑚
≥ 𝛽𝑚

∗
⇒ 𝑚 ≤

log2𝑁−𝑚
∗ log2 𝛽

1 − log2(1+𝛽)

Theorem

The Weighted Halving algorithm applied to a binary prediction problem with 𝑁

experts and shrinking factor 𝛽 < 1 makes at most 𝑚 ≤
log2𝑁−𝑚

∗ log2 𝛽

1 − log2(1+𝛽)
mistakes if 

at least one of the expert makes at most 𝑚∗ mistakes
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Weather Prediction

Website providing weather forecasts for tomorrow:

• We are no expert in meteorology

• We can look the to other forecasting services and choose among them

We can look at the results of all the forecasting services a posteriori of the 
selection

Objective:

We would like to be as good as the best expert
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Expert Learning
Convex Loss
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Weather Prediction++

Website providing rain mm for tomorrow:

• We are no expert in meteorology

• We can look the to other forecasting services and choose among them

We can look at the results of all the forecasting services a posteriori of the 
selection
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Continuous Prediction Space

• the outcome space 𝑌 is arbitrary

• the decision space 𝐷 is a convex subset of ℝ𝑠

• the performance function 𝑙 ො𝑦, 𝑦

• is bounded, for simplicity 𝑙 ො𝑦, 𝑦 ∈ 0,1

• convex in the first argument 𝑙 ⋅, 𝑦 for each 𝑦 ∈ 𝑌

In this context, we cannot count the number of mistakes. Instead, we use:

Definition: Regret

𝑅𝑛 𝐴 ≔

𝑡=1

𝑛

𝑙 ො𝑦𝑡, 𝑦𝑡 − min
𝑖∈{1,…,𝑁}



𝑡=1

𝑛

𝑙 𝑓𝑖,𝑡, 𝑦𝑡
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Concept of Experts

An expert can be anything:

• Fixed over time 𝑓𝑖,𝑡 = 𝑐𝑖

• Adaptive experts 𝑓𝑖,𝑡 = 𝑓𝑖(𝑥), where x is a context

• Learning experts 𝑓𝑖,𝑡 = 𝑓𝑖(𝑡, 𝑦1, … , 𝑦𝑡−1)

• Experts can even form a coalition against the learner

We are not aware about how the expert is able to provide its prediction, nor to 
replicate the forecast process
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Exponentially Weighted Average Forecaster

Exponentially Weighted Average (EWA)

initialize the experts’ weights 𝑤𝑖,𝑡 = 1

at each round 𝑡

we collect the experts’ predictions 𝑓𝑖,𝑡

predict ො𝑦𝑡 =
σ𝑖=1
𝑁 𝑤𝑖,𝑡−1𝑓𝑖,𝑡

σ𝑖=1
𝑁 𝑤𝑖,𝑡−1

observe 𝑦𝑡 and suffer loss 𝑙 ො𝑦𝑡, 𝑦𝑡

update the weights 𝑤𝑖,𝑡 ← 𝑤𝑖,𝑡−1 exp(−𝜂 𝑙(𝑓𝑖,𝑡 , 𝑦𝑡)) for each expert

The more an expert suffer loss, the less is used to provide a prediction

We need only to store the normalized weight ෝ𝑤𝑖,𝑡 =
𝑤𝑖,𝑡

σ𝑖=1
𝑁 𝑤𝑖,𝑡

for each expert
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EWA Regret Bound

Theorem

The EWA algorithm applied to a continuous prediction problem with 𝑁 experts and 
with parameter 𝜂 has regret:

𝑅𝑛 𝐸𝑊𝐴 ≤
𝑙𝑜𝑔𝑁

𝜂
+
𝜂𝑛

8

We use the following lemma:

Theorem: Hoeffding Inequality

Let 𝑋 be a random variable with 𝑎 ≤ 𝑋 ≤ 𝑏. Then for any 𝑠 ∈ ℝ:

log 𝐸 exp 𝑠𝑋 ≤ 𝑠 𝐸 𝑋 +
𝑠2(𝑏 − 𝑎)^2

8
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EWA Regret Bound

Proof: Let us analyze the quantity 𝑊𝑡 = σ𝑖=1
𝑁 𝑤𝑖,𝑡

Step 1:

𝑙𝑜𝑔
𝑊𝑛+1

𝑊1
= log 

𝑖=1

𝑁

𝑤𝑖,𝑛+1 − 𝑙𝑜𝑔𝑁 ≥ log max
𝑖

𝑤𝑖,𝑛+1 − 𝑙𝑜𝑔𝑁

= −𝜂min
𝑖


𝑡=1

𝑛

𝑙 𝑓𝑖,𝑡 , 𝑦𝑡 − 𝑙𝑜𝑔 𝑁

Step 2:

𝑙𝑜𝑔
𝑊𝑡+1

𝑊𝑡
= log 

𝑖=1

𝑁
𝑤𝑖,𝑡

𝑊𝑡
exp(−𝜂𝑙 𝑓𝑖,𝑡 , 𝑦𝑡 ) = log 𝐸[𝑒𝑥𝑝(−𝜂𝑙 𝑓𝑖,𝑡 , 𝑦𝑡 ]

≤ −𝜂𝐸 𝑙 𝑓𝑖,𝑡 , 𝑦𝑡 +
𝜂2

8
≤ −𝜂 𝑙 𝐸 𝑓𝑖,𝑡 , 𝑦𝑡 +

𝜂2

8
≤ −𝜂𝑙 ො𝑦𝑡 , 𝑦𝑡 +

𝜂2

8
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EWA Regret Bound

Step 3:

log
𝑊𝑛+1

𝑊1
= 

𝑡=1

𝑛

log
𝑊𝑡+1

𝑊𝑡

−𝜂min
𝑖


𝑡=1

𝑛

𝑙 𝑓𝑖,𝑡 , 𝑦𝑡 − 𝑙𝑜𝑔 𝑁 ≤ log
𝑊𝑛+1

𝑊1
= 

𝑡=1

𝑛

log
𝑊𝑡+1

𝑊𝑡
≤ 

𝑡=1

𝑛

−𝜂𝑙 ො𝑦𝑡 , 𝑦𝑡 +
𝜂2

8

−𝜂min
𝑖


𝑡=1

𝑛

𝑙 𝑓𝑖,𝑡 , 𝑦𝑡 − 𝑙𝑜𝑔 𝑁 ≤ −𝜂

𝑡=1

𝑛

𝑙 ො𝑦𝑡 , 𝑦𝑡 +
𝑛𝜂2

8



𝑡=1

𝑛

𝑙 ො𝑦𝑡 , 𝑦𝑡 −min
𝑖


𝑡=1

𝑛

𝑙 𝑓𝑖,𝑡 , 𝑦𝑡 ≤
𝑙𝑜𝑔𝑁

𝜂
+
𝑛𝜂

8



Boracchi, Trovò

Parameter Tuning

𝑤𝑖,𝑡 ← 𝑤𝑖,𝑡−1 exp(−𝜂 𝑙(𝑓𝑖,𝑡 , 𝑦𝑡))

We need to find a way to set 𝜂:

• large values for 𝜂: we converge to a single expert which might be the wrong one

• small values for 𝜂: we converge to the correct expert, but it takes a long time

This is reflected in the regret bound too:

𝑅𝑛 𝐸𝑊𝐴 ≤
𝑙𝑜𝑔𝑁

𝜂
+
𝜂𝑛

8

We can minimize the bound in terms of time horizon 𝑛 and number of expert 𝑁 choosing 

𝜂 =
8 𝑙𝑜𝑔𝑁

𝑛
getting:

𝑅𝑛 𝐸𝑊𝐴 ≤
𝑛 𝑙𝑜𝑔𝑁

2
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Parameter Tuning

If we do not know the time horizon:

Proof: nontrivial extension of the proof with 𝜂 constant (see Cesa-Bianchi et al. 
2006)

Theorem

The EWA algorithm applied to a continuous prediction problem with 𝑁 experts and 

with parameter 𝜂𝑡 =
8 log 𝑁

𝑡
has regret:

𝑅𝑛 𝐸𝑊𝐴 ≤
𝑛 log𝑁

2
+

𝑙𝑜𝑔𝑁

8
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Scientific Question about the Result

Is this a proper result for an Online Learning algorithm?

Is this the best algorithm we might design for this specific setting?

Are there other algorithms that provide better results in more specific cases?

Are there algorithms providing better performance in practice?
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Lower Bound

Bounded and convex: Θ(𝑛 𝑙𝑜𝑔𝑁), matched by the EWA forecaster

Mixable: 𝑐 𝑙𝑜𝑔𝑁, not necessarily matched by the EWA

Exp concave: 𝑐 𝑙𝑜𝑔𝑁, matched by the EWA
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Quadratic Loss

Let us restrict on a specific loss function: the quadratic one

𝑙 ො𝑦, 𝑦 = ො𝑦 − 𝑦 2

In this case a simple strategy has also strong theoretical guarantees:

Follow the Leader (FL)

at each round 𝑡

collect the experts’ predictions 𝑓𝑖,𝑡

predict ො𝑦𝑡 = 𝑓𝐸,𝑡 where 𝐸 = arg min
𝑖∈{1,…,𝑁}

σ𝑠=1
𝑡−1 𝑙(𝑓𝑖,𝑠, 𝑦𝑠)

observe 𝑦𝑡 and suffer loss 𝑙 ො𝑦𝑡, 𝑦𝑡
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FL Bound

Proof (sketch):

In this specific case, the FL algorithm chooses ෝ𝑦𝑡 = σ𝑠=1
𝑡−1 𝑦𝑠

Step 1: show that the FL forecaster knowing also the losses suffered at round 𝑡
performs as well as the best constant expert

Step 2: show that the prediction of the original FL differs from the previous one for 

a factor of at most 𝜖𝑡 ≤
8

𝑡

Step 3: then the regret is bounded by σ𝑠=1
𝑡 𝜖𝑠 ≤ 8(log 𝑛 + 1)

Theorem

The FL algorithm applied to a continuous prediction problem against constant 
experts and quadratic loss has regret:

𝑅𝑛 𝐹𝐿 ≤ 8(l𝑜𝑔 𝑛 + 1)
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Other Convex Optimization Algorithms

• Gradient-based exponentially weighted average forecaster: instead of the loss in 
the weight update we use the gradient of the loss

• Multilinear forecaster: weights are updated as

𝑤𝑖,𝑡+1 ← 𝑤𝑖,𝑡 1 + 𝜂 ℎ 𝑓𝑖,𝑡, 𝑦𝑡

where ℎ(⋅,⋅) is a payoff function

• Greedy forecaster: chooses the expert by minimizing the worst-case loss at the 
next step combined with its loss up to now

• Online Gradient Descent: at each round update the prediction using a single step 
in the direction of the gradient
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Matlab Exercise

Given an Expert environment:

• Implement the EWA forecaster

• Implement the FL forecaster

Draw the regret for both algorithms and compare them with the FL bound
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Expert Learning
Non-Convex Loss
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Weather Prediction#

Website providing forecasting for tomorrow:

• We are no expert in meteorology

• We can look the to other forecasting services and choose among them
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Online Discrete Prediction

• the outcome space 𝑌 is discrete ( 𝑌 > 2)

• the decision space 𝐷 = 𝑌

• the performance function 𝑙 ො𝑦, 𝑦 = 1(ො𝑦 ≠ 𝑦)

We count mistakes w.r.t. a class of 𝑁 experts providing constant prediction 𝑓1, … , 𝑓𝑁

….it should be as difficult as the continuous case…

Definition: Regret

𝑅𝑛 𝐴 ≔

𝑡=1

𝑛

𝑙 ො𝑦𝑡, 𝑦𝑡 − min
𝑖∈{1,…,𝑁}



𝑡=1

𝑛

𝑙 𝑓𝑖 , 𝑦𝑡
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Need for Convex Loss: Idea

Assume to have only two experts

The prediction we are providing is a convex combination of the twos:

ො𝑦𝑡 = 𝛼𝑡 𝑓1 + 1 − 𝛼𝑡 𝑓2

The convex combination of the experts' losses overestimates the real loss

𝑙 𝑓1, 𝑦𝑡

𝑙 𝑓2, 𝑦𝑡

𝑙 ෝ𝑦𝑡 , 𝑦𝑡

𝛼𝑡 𝑙 𝑓1, 𝑦𝑡 + 1 − 𝛼𝑡 𝑙(𝑓2, 𝑦𝑡)
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Deterministic Algorithms

The loss function is not convex in the first argument

Regret counterexample: two classes and the experts are 𝑓1 = 0 and 𝑓2 = 1

For any algorithm 𝐴 there exists at least a sequence 𝑦1(𝐴), …𝑦𝑛(𝐴) s.t. its loss is 𝑛

• At round 1 the environment sets 𝑦1(𝐴) = 1 − ො𝑦1

• At round 𝑡 the prediction of the algorithm is ො𝑦𝑡 depending on 𝑦1 𝐴 ,… , 𝑦𝑡−1 𝐴

• At round 𝑡 the environment sets 𝑦𝑡 = 1 − ො𝑦𝑡

On the same sequence 𝑦1 𝐴 ,… , 𝑦𝑛(𝐴) at least one of the expert provides a 

cumulative loss smaller than 
𝑛

2
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Deterministic Algorithm Regret

Solution: resort to randomization

Basic idea: we use the EWA forecaster and the weights as a probability distribution

We call this Randomized EWA forecaster (REWA)

Theorem

Any deterministic algorithm 𝐴 algorithm applied to the discrete prediction problem 
has a worst-case regret:

𝑅𝑛 𝐴 ≥
𝑛

2
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Equivalent Problem

Let us define the following continuous prediction problem:

• the outcome space 𝑌′ = 𝑌 × 𝐷′𝑁

• the decision space 𝐷′ = {𝑝 ∈ 0, 1 𝑁: σ 𝑝𝑖 = 1}

• the experts 𝑓𝑖,𝑡
′ = 0,… , 0, 1, 0, … , 0 in the i-th position of dimension D

• the performance function 𝑙′ 𝑝, 𝑦, 𝑓1, … , 𝑓𝑁 = σ𝑖=1
𝑁 𝑝𝑖 𝑙(𝑓𝑖 , 𝑦) is now convex

At each round we predict with 𝐼𝑡 drawn from the distribution Ƹ𝑝1, … , Ƹ𝑝𝑁 and we 
have:

𝐸 𝑙 𝐼𝑡 , 𝑦𝑡 =

𝑖=1

𝑛

Ƹ𝑝𝑖𝑙 𝑓𝑖 , 𝑦𝑡 = 𝑙′ Ƹ𝑝, 𝑦, 𝑓1, … , 𝑓𝑁

in expectation we have the same loss of the original EWA
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REWA Regret

Theorem

The EWA algorithm applied to a continuous prediction problem with 𝑁 experts and 
with parameter 𝜂 has regret:

𝑅𝑛 𝐸𝑊𝐴 ≤
𝑙𝑜𝑔𝑁

𝜂
+
𝜂𝑛

8

Theorem

The REWA algorithm applied to a discrete prediction problem with 𝑁 experts and 
with parameter 𝜂 has regret:

𝐸[𝑅𝑛 𝑅𝐸𝑊𝐴 ] ≤
𝑙𝑜𝑔𝑁

𝜂
+
𝜂𝑛

8
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High Probability Analysis

This means that on some specific runs the REWA is performing arbitrarily bad

Applying it to Xt = 𝑙 𝐼𝑡 , 𝑦𝑡 , with 𝛿 = 𝑒−
2𝜖2

𝑛 , we have:

𝑃 

𝑡=1

𝑛

𝑙 𝐼𝑡 , 𝑦𝑡 −

𝑡=1

𝑛

𝐸 𝑙 𝐼𝑡 , 𝑦𝑡 >
𝑛𝑙𝑜𝑔1/𝛿

2
≤ 𝛿

Theorem (Hoeffding-Azuma Bound)

Given a set of 𝑛 random variables 𝑋1, … , 𝑋𝑛 defined over the support [0,1] the 

following holds:

𝑃 

𝑡=1

𝑛

𝑋𝑡 −

𝑡=1

𝑛

𝐸[𝑋𝑡] > 𝜖 ≤ 𝑒−
2𝜖2

𝑛
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High Probability Bound

Merging the regret bound in expectation and the high probability bound we have:

Theorem

The REWA algorithm applied to a discrete prediction problem with 𝑁 experts and 

with parameter 𝜂 =
8𝑙𝑜𝑔𝑁

𝑛
satisfies:

𝑅𝑛 𝑅𝐸𝑊𝐴 ≤
𝑛𝑙𝑜𝑔𝑁

2
+

𝑛𝑙𝑜𝑔1/𝛿

2

with probability at least 1 − 𝛿
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FL Revisited

Are we still able to use FL for this problem? No, we would have the same problems 
since it is a deterministic algorithm

Follow The Perturbed Leader (FPL)

at each round 𝑡

collect the experts’ predictions 𝑓𝑖,𝑡

predict ො𝑦𝑡 = 𝑓𝐸,𝑡 where 𝐸 = arg min
𝑖∈{1,…,𝑁}

(σ𝑠=1
𝑡−1 𝑙(𝑓𝑖,𝑠, 𝑦𝑠) + 𝑍𝑖,𝑡)

observe 𝑦𝑡 and suffer loss 𝑙 ො𝑦𝑡, 𝑦𝑡

Where 𝑍𝑖,𝑡 are realizations of i.i.d. random variables
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FPL Regret Bound

Worse result in terms of number of number of experts 𝑁 than REWA

We can restore the order of 𝑙𝑜𝑔𝑁 choosing carefully the random variables 𝑍𝑖,𝑡
using a two-sided exponential distribution

𝑝 𝑧 =
𝜂

2

𝑁
𝑒−𝜂|𝑧| (with 𝜂 > 0)

Theorem

The FPL algorithm applied to a discrete prediction problem with 𝑁 experts and with 
parameter satisfies:

𝑅𝑛 𝐹𝑃𝐿 ≤ 2 𝑛𝑁 +
𝑛𝑙𝑜𝑔1/𝛿

2

With probability at least 1 − 𝛿
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Expert Learning
Infinite Number of Experts
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Portfolio Optimization

Sequential investment problem:

• Given budget 𝑊0, invest it over a set of 𝑁 different stocks

• At each round, I am required to choose a distribution ෞ𝒚𝒕 = (ො𝑦1,𝑡, … , ො𝑦𝑁,𝑡) of the 
budget over the available stocks

• The environment chooses a vector 𝒚𝒕 = (𝑦1,𝑡 , … , 𝑦𝑁,𝑡) telling us the stock prices

• At the end of 𝑛 investment steps we have a total wealth of:

𝑊𝑛 = 

𝑖=1

𝑁

ෝ𝑦𝑖 𝑊𝑛−1𝑦𝑖 = 𝑊0 ෑ

𝑡=1

𝑛

ෞ𝒚𝒕
⊤
𝒚𝒕
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Regret for Portfolio Optimization

Maximize 𝑊𝑛 is equivalent to minimize − log𝑊𝑛, now interpreted as loss:

− log𝑊𝑛 = −𝑙𝑜𝑔𝑊0 + 

𝑡=1

𝑛

− log(ෞ𝒚𝒕
⊤
𝒚𝒕)

i.e., we are using a loss equal to 𝑙 ෞ𝒚𝒕, 𝒚𝒕 = −log(ෞ𝒚𝒕
⊤
𝒚𝒕)

The regret against the best constant expert becomes:

where 𝒚∗ is the best constantly rebalanced portfolio

Definition: Regret

𝑅𝑛 𝐴 ≔

𝑡=1

𝑛

−log(ෞ𝒚𝒕
⊤
𝒚𝒕) − min

𝒚∗∈Δ𝑁


𝑡=1

𝑛

log(𝒚∗⊤𝒚𝒕)
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Portfolio Optimization Problem

• the outcome space 𝑌 is discrete ( 𝑌 > 2)

• the decision space 𝐷 = Δ𝑁

• the performance function 𝑙 ෞ𝒚𝒕, 𝒚𝒕 = −log(ෞ𝒚𝒕
⊤
𝒚𝒕)

Can we use the EWA forecaster? We need to define its continuous version

Define 𝑤𝑡 𝒂 = exp(−𝜂 σ𝑠=1
𝑡−1−log(𝒂⊤𝒚𝒕)) and 𝑧𝑡 = 𝒂∈Δ𝑁𝑤𝑡 𝒂 𝑑𝒂

at each round 𝑡

predict ො𝑦𝑡 = 𝒂∈Δ𝑁
𝑤𝑡 𝒂

𝑧𝑡
𝒂 𝑑𝒂

observe 𝑦𝑡 and suffer loss −log(ෞ𝒚𝒕
⊤
𝒚𝒕)

update weights 𝑤𝑡(𝒂) and 𝑊𝑡
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Regret of the CEWA

Sublinear but not satisfactory

What if we use a strategy which tries to follow the leader i.e. the combination of 
stocks providing, so far, the best wealth

Theorem

The CEWA algorithm applied to an online portfolio optimization problem with 𝑁

stocks and with parameter 𝜂 = 2
2𝑁 log 𝑛

𝑛
has regret:

𝑅𝑛 𝐶𝐸𝑊𝐴 ≤ 1 +
𝑁𝑛 log 𝑛

2
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Universal Portfolio

Weighted average approach

Define the wealth of a constant strategy 𝑊𝑛 𝒂 = 𝑊0 ς𝑡=1
𝑛−1𝒂⊤𝒚𝒕

at each round 𝑡

predict ො𝑦𝑡 =
𝒂∈Δ𝑁 𝒂𝑊𝑡 𝒂 𝑑𝒂

𝒂∈Δ𝑁𝑊𝑡 𝒂 𝑑𝒂

observe 𝑦𝑡 and suffer loss −log(ෞ𝒚𝒕
⊤
𝒚𝒕)

Theorem

The UP algorithm applied to an online portfolio optimization problem with 𝑁 stocks 
has regret:

𝑅𝑛 𝑈𝑃 ≤ 𝑁 − 1 log(𝑛 + 1)
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From Model to Real-World

Even if this model is quite general it does not take into account some of the 
peculiar aspects of reality:

• When exchanging stocks also implies to have transaction costs, therefore one 
might need to limit the variation of the strategy over time

• Vittori et al., Dealing with Transaction Costs in Portfolio Optimization: Online Gradient Descent with 
Momentum, ICAIF, 2020

• Das et al., Online Lazy Updates for Portfolio Selection with Transaction Costs, AAAI, 2013

• Using online learning might provide low performance at the beginning of the  
learning period, therefore its application might scare the investors

• Bernasconi et al.,  Conservative Online Convex Optimization, ECML, 2020
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Lecture Recap

We have guarantees on the loss we incur in a set of different problems when using 
specific algorithm:

• Prediction problem with a finite number of experts

• Classification problem over finite number of classes

• Prediction problem with an infinite number of experts

Depending on the loss function we suffer, we might want to use different 
algorithms

On some specific classes of problems we are sure no other algorithm performs as 
good as the algorithms described here
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Next Lecture

• Switch to settings in which the feedback is only limited

• Analysis of the cases in which the environment is stochastic but we want to 
operate in an online manner


