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Statistical Approaches to
Anomaly Detection

..a different monitoring problem



The Change/Anomaly Detection Problems

/\
Change-detection problem: (i)

(7

Given the previously estimated model, the arrival of new data invites the
question: “Is yesterday’s model capable of explaining today’s data?”

Detecting process changes is important to understand the monitored
phenomenon

Anomaly-detection problem:

Locate those samples that do not conform the normal ones or a model
explaining normal ones

Anomalies in data translate to significant information

V. Chandola, A. Banerjee, V. Kumar. "Anomaly detection: A survey". ACM Comput. Surv. 41, 3, Article 15 (2009), 58 pages.
C. ]. Chu, M. Stinchcombe, H. White "Monitoring Structural Change" Econometrica Vol. 64, No. 5 (Sep., 1996), pp. 1045-1065.



The Typical Anomaly Detection Solutions

Most algorithms are composed of:

* A statistic that has a known response to normal data (e.g., the
average, the sample variance, the log-likelihood, the confidence of a
classifier, an “anomaly score”...)

* A decision rule to analyze the statistic (e.g., an adaptive threshold, a
confidence region
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The Typical Anomaly Detection Solutions
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The Typical Anomaly Detection Solutions
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Performance Measures

Assessing performance of anomaly detection
algorithms

Boracchi, Trovo



Anomaly-detection Performance

Anomaly detection performance:
#{anomalies detected} Ré A

* True positive rate: TPR = #{anomalies}

#{normal samples detected}

* False positive rate: FPR = #{normal samples}

You have probably also heard of
* False negative rate (or miss-rate): FNR = 1 — TPR
 True negative rate (or specificity): TNR = 1 — FPR

#{anomalies detected}
#{detections}

 Recall on anomalies (or sensitivity, hit-rate): TPR

* Precision on anomalies:

Boracchi, Trovo



TPR and FPR Trade-off

There is always a trade-off between TPR and FPR (and similarly for
derived quantities), which is ruled by algorithm parameters

By changing y performance changes (e.g. true positive increases but also
false positives do)

decision rule: S(x) >y

4 ﬁ statistic

5(x)
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TPR and FPR Trade-off

There is always a trade-off between TPR and FPR (and similarly for
derived quantities), which is ruled by algorithm parameters

By changing y performance changes (e.g. true positive increases but also
false positives do)

decision rule: S(x) >y

statistic
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Anomaly-detection Performance

There is always a trade-off between TPR and FPR (and similarly for
derived quantities), which is ruled by algorithm parameters

Thus, to correctly assess performance it is necessary to consider at least
two indicators (e.g., TPR, FPR)

Indicators combining both TPR and FPR:

#{anomalies detected} + #{normal samples not detected}

Accur =
ccuracy #{samples}

2#{anomalies detected}

F1 score =
#{detections} + #{anomalies}

These equal 1 in case of “ideal detector” which detects all the anomalies
and has no false positives

Boracchi, Trovo



Anomaly-detection Performance

Comparing different methods might be tricky since we have to make sure

that both have been configured in their best conditions

Testing a large number of parameters lead to the ROC (recei

characteristic) curve (FPR,TPR) for a
specific parameter

The ideal detector would achieve: |
* FPR = 0%, 0.8 |-

 TPR = 100%
Thus, the closer to (0,1) the better

m——— STSIM
AUC = 0.619
Coding
AUC = 0.812
Variance
AUC = 0.775
= (Gradient
AUC = 0.704
—— Grad & Var
AUC = 0.796
= Proposed
AUC = 0.926

0.6

TPR

0.4F

The largest the Area Under the
Curve (AUC), the better

The optimal parameter is the one

0.2 F

yielding the point closest to (0,1) ¥

ing
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Anomaly detection
approaches

..when ¢, and ¢, are unknown



Anomaly detection when ¢y and ¢4 are unknown

Most often, only a training set TR is provided:

There are three scenarios:
* Supervised: Both normal and anomalous training data are provided in TR.

« Semi-Supervised: Only normal training data are provided, i.e. no anomalies in
TR.

e Unsupervised: TR is provided without label.

lfv(f)a Tﬁf““”ée? %c“V%q:/ﬁ‘éo

V. Chandola, A. Banerjee, V. Kumar. "Anomaly detection: A survey". ACM Comput. Surv. 41, 3, Article 15 (2009), 58 pages.



Anomaly detection when ¢y and ¢4 are unknown

Most often, only a training set TR is provided:

There are three scenarios:

‘- Supervised: Both normal and anomalous training data are provided in TR.

« Semi-Supervised: Only normal training data are provided, i.e. no anomalies in
TR.

e Unsupervised: TR is provided without label.

V. Chandola, A. Banerjee, V. Kumar. "Anomaly detection: A survey". ACM Comput. Surv. 41, 3, Article 15 (2009), 58 pages.



Supervised anomaly detection - disclaimer

Most papers and reviews agree that supervised methods have not to be
considered part of anomaly detection, because:

« Anomalies in general lacks of a statistical coherence
« Not (enough) training samples are provided for anomalies

TR - 5""’#0, ’L’\/—‘l«:)

However, Th - f("/ﬂ) / %G/Rdlje/@'ﬁ
« Some supervised problems are often referred to as «detection», in case
of severe class imbalance (e.g. fraud detection)

36'{9/"?

e Supervised models can be transferred in unsupervised methods, in
particular for deep learning

T. Ehret, A. Davy, ]M Morel, M. Delbracio “Image Anomalies: A Review and Synthesis of Detection Methods", Journal of Mathematical Imaging and Vision, 1-34



Supervised anomaly detection - solutions

In supervised methods training data are annotated and divided in normal
(+) and anomalies (—) :

TR = {(x(t),y(t)), t<tyx€RLye€E{+ -}
Solution:

e Train a two-class classifier to distinguish normal vs anomalous data.

During training:

* Learn a classifier X from TR.

During testing:
. Co;pute the classifier output K (x), or
* Set a threshold on the posterior ps(—|x), or
 Select the k —most likely anomalies

Boracchi, Trovo



Supervised anomaly detection - challenges

These classification problems are challenging because these anomaly-
detection settings typically imply:

* Class Imbalance: Normal data far outnumber anomalies

 Concept Drift: Anomalies might evolve over time, thus the few
annotated anomalies might not be representative of anomalies
occurring during operations

* Selection Bias: Training samples are typically selected through a
closed-loop and biased procedure. Often only detected anomalies are
annotated, and the vast majority of the stream remain unsupervised.
This biases the selection of training samples.

Dal Pozzolo A., Boracchi G., Caelen 0., Alippi C. and Bontempi G., “Credit Card Fraud Detection: a Realistic Modeling and a Novel
Learning Strateay” |EEE TNNL 2017. 14 pages



Fraud Detection
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Dal Pozzolo A., Boracchi G., Caelen 0., Alippi C. and Bontempi G., “Credit Card Fraud Detection: a Realistic Modeling and a Novel
Learning Strategy”, IEEE TNNL 2017, 14 pages



Supervised anomaly detection - An Example

This is what typically happens in fraud detection.

Class Imbalance:

 Frauds are typically less than 1% of genuine transactions

Concept Drift:

* Fraudster always implement new strategies

Sampling Selection Bias:

* Only alerted / reported transactions are controlled and annotated

 Old transactions that have not been disputed are considered genuine
transactions

Dal Pozzolo A., Boracchi G., Caelen 0., Alippi C. and Bontempi G., “Credit Card Fraud Detection: a Realistic Modeling and a Novel
Learning Strategy”, IEEE TNNL 2017, 14 pages



Anomaly detection when ¢y and ¢4 are unknown

Most often, only a training set TR is provided:

There are three scenarios:
* Supervised: Both normal and anomalous training data are provided in TR.

« Semi-Supervised: Only normal training data are provided, i.e. no anomalies in
TR.

e Unsupervised: TR is provided without label.

V. Chandola, A. Banerjee, V. Kumar. "Anomaly detection: A survey". ACM Comput. Surv. 41, 3, Article 15 (2009), 58 pages.



Practical Operating conditions

In semi-supervised methods the TR is composed of normal data
TR = {x(t),t < ty,x ~ Py}

There are many reasons to opt for a semi-supervised / unsupervised
approach

 Normal data are easy to gather. A training set of normal signals
denoted as TR is provided

« Anomalous / changed data are difficult to collect

 Training examples in TR might not be representative of all the
possible anomalies / changes that can occur

* In some cases TR is not labeled, but it is reasonable to assume that
normal data are the vast majority

V. Chandola, A. Banerjee, V. Kumar. "Anomaly detection: A survey". ACM Comput. Surv. 41, 3, Article 15 (2009), 58 pages.
Pimentel, M. A., Clifton, D. A., Clifton, L., Tarassenko, L. “A review of novelty detection” Signal Processing, 99, 215-249 (2014)



Semi-supervised Anomaly-Detection Methods

In semi-supervised methods the TR is composed of normal data
TR = {x(t),t < ty,x ~ Py}

Moreover... all in all... it is sometimes safer to detect any data departing
from the normal conditions

Semi-supervised anomaly-detection methods are also referred to as
novelty-detection methods

—

Boracchi, Trovo



Density-based methods

Density-Based Methods: Normal data occur in high probability regions of a
stochastic model, while anomalies occur in the low probability 5g3ions of

the model “)90 TR
During traininan be estimated from the training set )
TR = {x(t),t < ty,x ~ ¢Po} /MFK%

 parametric models (e.g., Gaussian mixture models) \¢
« nonparametric models (e.g. KDE, histograms) (

During testing: ! T o
 Anomalies are detected as data yielding gBrc,(x) < ;\\ ﬁ)/t ( ~ 7 ~

A /x

V. Chandola, A. Banerjee, V. Kumar. "Anomaly detection: A survey". ACM Comput. Surv. 41, 3, Article 15 (2009), 58 pages.



Density-based methods

" A\
G
Advantages: (EEEQ\‘ééF d%

* ¢o(x) indicates how safe a detection is (like a p-value)

* If the density estimation process is robust to outliers, it is possible to tolerate
few anomalous samples in TR

 Histograms are simple to compute in relatively small dimensions

Challenges:
* It is challenging to fit models for high-dimensional data
 Histograms traditionally suffer of curse of dimensionality when d increases

 Often the 1D histograms of the marginals are monitored, ignoring the correlations
among components

V. Chandola, A. Banerjee, V. Kumar. "Anomaly detection: A survey". ACM Comput. Surv. 41, 3, Article 15 (2009), 58 pages.



Density-based methods: Monitoring the Log-likelihood

Monitoring the log-likelihood of data w.r.t ¢, allow to address anomaly-
detection problem in multivariate data

1. During training, estimate ¢, from TR
. . 1 (&Zf)
2. During testing, compute
L(x<t>) = log(¢ho (x(1)))
3. Monitor {£(x(t)), t =1,.

*) .

x(t)

: L(x(t))




Density-based methods: Monitoring the Log-likelihood

Monitoring the log-likelihood of data w.r.t ¢, allow to address anomaly-
detection problem in multivariate data

1. During training, estimate ¢, from TR

2. During testing, compute
L(x(t)) = log(po(x(t)))
3. Monitor {£(x(t)), t =1,...}

This is quite a popular approach in either anomaly and change detection
algorithms

L. I. Kuncheva, “Change detection in streaming multivariate data using likelihood detectors," IEEE TKDE 2013.
X. Song, M. Wu, C. Jermaine, and S. Ranka, “Statistical change detection for multidimensional data” KDD, 2007.
J. H. Sullivan and W. H. Woodall, “Change-point detection of mean vector or covariance matrix shifts using multivariate individual observations," IIE

transactions, vol. 32, no. 6, 2000.
C. Alippi, G. Boracchi, D. Carrera, M. Roveri, "Change Detection in Multivariate Datastreams: Likelihood and Detectability Loss" 1JCAl 2016,



Domain-based methods

Domain-based methods: Estimate a boundary around normal data, rather
than the density of normal data.

A drawback of density-estimation methods is that they are meant to be
accurate in high-density regions, while anomalies live in low-density ones.

One-Class SVM are domain-based methods defined by the Qormal samples
at the periphery of the distribution. T

Scholkopf, B., Williamson, R. C., Smola, A. ]., Shawe-Taylor, |., Platt, ). C. "Support Vector Method for Novelty Detection". In NIPS 1999 (Vol. 12, pp. 582-588).
Tax, D. M., Duin, R. P. "Support vector domain description". Pattern recognition letters, 20(11), 1191-1199 (1999)
Pimentel, M. A., Clifton, D. A., Clifton, L., Tarassenko, L. “A review of novelty detection” Signal Processing, 99, 215-249 (2014)



One-class svm (Scholkopf et al. 1999)

Idea: define boundaries by estimating a binary function f that captures regions
of the input space where density is higher. o

As in support vector methods, f is defined in the feature space F and decision
boundaries are defined by a few support vectors (i.e., a few normal data).

Let Y (x) the feature associated to x, f is defined as o
fx) = Sign(<fw,l/)(x) > —p)

Where the hyperplane parameters w, p are optimized to yield a function that is
positive on most training samples. Thus in the feature space, normal points can
be separated from the origin.

A linear separation in the feature space corresponds to a variety of nonlinear
boundaries in the space of x.

Scholkopf, B., Williamson, R. C., Smola, A. J., Shawe-Taylor, ]., Platt, J. C. "Support Vector Method for Novelty Detection". In NIPS
1999 (Vol. 12, pp. 582-588).



One-class svm (Tax and Duin 1999)

Boundaries of normal region can be also defined by an hypersphere that,
in the feature space, encloses most of the normal data.

Similar detection formulas hold, measuring the distance in the feature

space from the sphere center for each Y (x) for x € TR. @
A

The function is always defined by a few support vectors.

Remarks: In both one-class approaches, the amount of samples that falls
within the margin (outliers) is controlled by regularization parameters.

This parameter regulates the number of outliers in the training set and
the detector sensitivity.

Tax, D. M., Duin, R. P. "Support vector domain description". Pattern recognition letters, 20(11), 1191-1199 (1999)



Anomaly detection when ¢y and ¢4 are unknown

Most often, only a training set TR is provided:

There are three scenarios:
* Supervised: Both normal and anomalous training data are provided in TR.

« Semi-Supervised: Only normal training data are provided, i.e. no anomalies in
TR.

e Unsupervised: TR is provided without label.

V. Chandola, A. Banerjee, V. Kumar. "Anomaly detection: A survey". ACM Comput. Surv. 41, 3, Article 15 (2009), 58 pages.



Unsupervised anomaly-detection

The training set TR might contain both normal and anomalous data.
However, no labels are provided

TR ={x(t),t <ty}
Underlying assumption: Anomalies are rare w.r.t. normal data TR

One in principle could use:

 Density/Domain based methods that are robust to outliers can be
applied in an unsupervised scenario

* Unsupervised methods can be improved whenever labels are
available

Boracchi, Trovo



Distance-based methods

Distance-based methods: normal data fall in dense neighborhoods, while
anomalies are far from their closest neighbors.

A critical aspect is the choice of the similarity measure to use.

Anomalies are detected by monitoring:
* distance between each data and its k —nearest neighbor

«—

V. Chandola, A. Banerjee, V. Kumar. "Anomaly detection: A survey". ACM Comput. Surv. 41, 3, Article 15 (2009), 58 pages.
Zhao, M., Saligrama, V. “Anomaly detection with score functions based on nearest neighbor graphs”. NIPS 2009
A. Zimek, E. Schubert, H. Kriegel. “A survey on unsupervised outlier detection in high-dimensional numerical data” SADM 2012.



Distance-based methods

Distance-based methods: normal data fall in dense neighborhoods, while
anomalies are far from their closest neighbors.

A critical aspect is the choice of the similarity measure to use.

Anomalies are detected by monitoring:
* distance between each data and its k —nearest neighbor
 the above distance considered relatively to neighbors

——————

V. Chandola, A. Banerjee, V. Kumar. "Anomaly put. Surv. 41, 3, Article 15 (2009), 58 pages. Boracchi, Trovo



Distance-based methods

Distance-based methods: normal data fall in dense neighborhoods, while
anomalies are far from their closest neighbors.

A critical aspect is the choice of the similarity measure to use.

Anomalies are detected by monitoring:
* distance between each data and its k —nearest neighbor
« the above distance considered relatively to neighbors / O+

« whether they do not belong to clusters, or are at the cluster periphery, or belong

to small and sparse clusters

(s

V. Chandola, A. Banerjee, V. Kumar. "Anomaly detection: A survey". ACM Comput. Surv. 41, 3, Article 15 (2009), 58 pages. Boracchi, Trovo



IFOR: Isolation Forest

Builds upon the rationale that «anomalies are easier to separate from the
rest of normal data»

This idea is implemented very efficiently through a forest of binary trees

that are constructed via an iterative procedure
p/,\bu&
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Fei Tony Liu, Kai Ming Ting and Zhi-Hua Zhou, Isolation Forest, ICDM 2008



IFOR: Isolation Forest

Builds upon the rationale that «anomalies are easier to separate from the
rest of normal data»

This idea is implemented very efficiently through a forest of binary trees
that are constructed via an iterative procedure

Randomly choose
° O 1. a component Xx;
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IFOR: Isolation Forest

Builds upon the rationale that «anomalies are easier to separate from the
rest of normal data»

This idea is implemented very efficiently through a forest of binary trees
that are constructed via an iterative procedure

Randomly choose

o O 1. a component x;
2. avalue in the range of

the i-th component

|
|

|

|

|

I projections of TR over
|

| This yields a splitting

|

Fei Tony Liu, Kai Ming Ting and Zhi-Hua Zhou, Isolation Forest, ICDM 2008



IFOR: Isolation Forest

Builds upon the rationale that «anomalies are easier to separate from the
rest of normal data»

This idea is implemented very efficiently through a forest of binary trees
that are constructed via an iterative procedure

yp'-)-

This yields a splittin
N y P g
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Fei Tony Liu, Kai Ming Ting and Zhi-Hua Zhou, Isolation Forest, ICDM 2008



IFOR: Isolation Forest

Builds upon the rationale that «anomalies are easier to separate from the
rest of normal data»

This idea is implemented very efficiently through a forest of binary trees
that are constructed via an iterative procedure

o Repeat the
Cf/gg\\ﬁ) procedure on

each node:

Fei Tony Liu, Kai Ming Ting and Zhi-Hua Zhou, Isolation Forest, ICDM 2008



IFOR: Isolation Forest

Builds upon the rationale that «anomalies are easier to separate from the
rest of normal data»

This idea is implemented very efficiently through a forest of binary trees
that are constructed via an iterative procedure

o Repeat the
& procedure on
each node:

Randomly select
a component

Fei Tony Liu, Kai Ming Ting and Zhi-Hua Zhou, Isolation Forest, ICDM 2008



IFOR: Isolation Forest

Builds upon the rationale that «anomalies are easier to separate from the
rest of normal data»

This idea is implemented very efficiently through a forest of binary trees
that are constructed via an iterative procedure

o Repeat the
procedure on
each node:
Randomly select
a component and
a cut point

Fei Tony Liu, Kai Ming Ting and Zhi-Hua Zhou, Isolation Forest, ICDM 2008



IFOR: Isolation Forest

Builds upon the rationale that «anomalies are easier to separate from the
rest of normal data»

This idea is implemented very efficiently through a forest of binary trees
that are constructed via an iterative procedure

° Randomly choose
a component and
a value within the
range and define
a splitting criteria

Fei Tony Liu, Kai Ming Ting and Zhi-Hua Zhou, Isolation Forest, ICDM 2008



IFOR: Isolation Forest

Builds upon the rationale that «anomalies are easier to separate from the
rest of normal data»

This idea is implemented very efficiently through a forest of binary trees
that are constructed via an iterative procedure

o Repeat the
procedure on the
nodes:
Randomly select

({% a component and

a cut point

Fei Tony Liu, Kai Ming Ting and Zhi-Hua Zhou, Isolation Forest, ICDM 2008



IFOR: Isolation Forest

Builds upon the rationale that «anomalies are easier to separate from the
rest of normal data»

This idea is implemented very efficiently through a forest of binary trees
that are constructed via an iterative procedure

PY Anomalies lies in
leaves close to
the root.

& o

Fei Tony Liu, Kai Ming Ting and Zhi-Hua Zhou, Isolation Forest, ICDM 2008



IFOR: Isolation Forest

An anomalous point (xy) can be easily isolated

Genuine points (x;) are instead difficult to isolate.
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Fei Tony Liu, Kai Ming Ting and Zhi-Hua Zhou, Isolation Forest, ICDM 2008



IFOR: Isolation Forest

Anomalies

IFOR

Fei Tony Liu, Kai Ming Ting and Zhi-Hua Zhou, Isolation Forest, ICDM 2008



IFOR: Isolation Forest

Normal data

IFOR

Fei Tony Liu, Kai Ming Ting and Zhi-Hua Zhou, Isolation Forest, ICDM 2008



IFOR: testing

Compute E(h(x)), the average path length among all the trees in the

forest, of a test sample x \

gf}x ﬁ

\‘i ‘1 [ dn 1

Fei Tony Liu, Kai Ming Ting and Zhi-Hua Zhou, Isolation Forest, ICDM 2008




IFOR: testing

A test sample is identified as anomalous when: n 0(
e ~
.

 n: number of samples in TR

* c(n): average path length of unsuccessful search in a binary tree

[

Fei Tony Liu, Kai Ming Ting and Zhi-Hua Zhou, Isolation Forest, ICDM 2008



Out of the
«Random Variable World»

Anomaly Detection Methods for Signals and Images

R VLM{: )
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.. An Anomaly-Detection Problem

Health monitoring / wearable devices:

Automatically analyze EGC tracings to
detect arrhythmias or incorrect devic

positioning K\DA 7
' -
1 -

LT

D. Carrera, B. Rossi, D. Zambon, P. Fragneto, and G. Boracchi "ECG Monitoring in Wearable Devices by Sparse Models" in
Proceedings of ECML-PKDD 2016, 16 pages
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.. An Anomaly-Detection Problem

Quality Inspection Systems: monitoring the nanofiber production
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Carrera D., Manganini F.,, Boracchi G., Lanzarone E. "Defect Detection in SEM Images of Nanofibrous Materials”,
IEEE Transactions on Industrial Informatics 2017, 11 pages, doi:10.1109/TIl.2016.2641472




. An Anomaly-Detection Problem

Quality Inspection Systems: monitoring the nanofiber production
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Carrera D., Manganini F., Boracchi G., Lanzarone E. "Defect Detection in SEM Images of Nanofibrous Materials”,
IEEE Transactions on Industrial Informatics 2017, 11 pages, doi:10.1109/TIl.2016.2641472



.. An Anomaly-Detection Problem

Detection of anomalies in chip production

Boracchi, Trovo



.. An Anomaly-Detection Problem

Detect anomalous patterns in the layout of defective chips, i.,e in the
o wafer defect map.

These might indicate faults,
: e | problems or malfunctioning
L in the chip production.

Boracchi, Trovo




.. A Change-Detection Problem

Time-series (including financial ones) are typically subject to changes, as
the data-generating process evolves over time. C{)
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G.J. Ross, D.K. Tasoulis, N.M. Adams "Nonparametric monitoring of data streams for changes in location and scale“ Technometrics 53 (4), 379-389, 2011
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.. A Change-Detection Problem

Environmental Monitoring

A sensor network monitoring rock faces:
detecting changes in the waveforms that
are recorded by MEMS sensors in network
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C. Alippi, G. Boracchi, B. Wohlberg "Change Detection in Streams of Signals with Sparse Representations" in Proceedings of IEEE ICASSP 2014



.. A Change-Detection Problem

Leak detection in Water Distribution Networks

flow m/s

I I I I I I I I I
200 400 600 800 1000 1200 1400 1600 1800 2000

time

G. Boracchi and M. Roveri “Exploiting Self-Similarity for Change Detection” , IJCNN 2014, pp 3339 - 3346



.. A Change-Detection Problem

Leak detection in Water Distribution Networks

Similar problems arise in other critical infrastructure monitoring scenarios

flow m/s

G. Boracchi and M. Roveri “Exploiting Self-Similarity for Change Detection” , IJCNN 2014, pp 3339 - 3346



OUR Running example
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Goal: Automatically measure area covered by defects
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Anomaly Detection in Images

The goal not determining whether the whole image is normal or
anomalous, but locate/segment possible anomalies
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Therefore, it is convenient to

()

1. Analyze the image patch-wise

K

2. Isolate regions containing
patches that are detected as
as anomalies
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Can we pursue approaches meant
for random variables on image
patches’



Density-based approach on image patches

A density-based approach to AD would be:
Training
i. Split the normal image in patches s

ii. Fit a statistical model ¢, = N (u, X) describing normal patches.
Testing

i.  Split the test image in patches

ii. Compute ¢,(s) the likelihood of each test patch s

iii. Detect anomalies by thresholding the likelihood

Du, B., Zhang, L.: Random-selection-based anomaly detector for hyperspectral imagery. IEEE Transactions on Geoscience and
Remote sensing



Density-based approach on image patches

A density-based approach to AD would be:
Training

i. Split the normal image in patches s

ii. Fit a statistical model‘qﬁo = N(u,X) ‘describing normal patches.

This model is rarely accurate
on natural images.
Small patches (e.g. 2 X 2 or
5 X 5) are typically preferred

Du, B., Zhang, L.: Random-selection-based anomaly detector for hyperspectral imagery. IEEE Transactions on Geoscience and
Remote sensing

X Xie, M Mirmehdi “Texture exemplars for defect detection on random textures“ - ICPR 2005



Density-based approach on image patches

A density-based approach to AD would be:
Training

i. Split the normal image in patches s

ii. Fit a statistical model‘qﬁo = N(u,X) ‘describing normal patches.

In some cases (textures) a
Gaussian Mixture was used
as a more general model

Du, B., Zhang, L.: Random-selection-based anomaly detector for hyperspectral imagery. IEEE Transactions on Geoscience and
Remote sensing

X Xie, M Mirmehdi “Texture exemplars for defect detection on random textures” - ICPR 2005



Density-based approach on image patches

A density-based approach to AD would be:

Training

. ‘Split the normal image‘in patches s

ii. Fit a statistical model ¢, = N (u, X) describing normal patches.

Random selection procedures
can be employed to minimize
the risk of including outliers

Du, B., Zhang, L.: Random-selection-based anomaly detector for hyperspectral imagery. IEEE Transactions on Geoscience and
Remote sensing



The limitations of the Random variable model

In many anomaly-detection problems in imaging, normal regions exhibit
peculiar structures and spatial correlation
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The limitations of the Random variable model

In many anomaly-detection problems in imaging, normal regions exhibit
peculiar structures and spatial correlation

|’4n ‘Xvnq ST/, N

ﬂ 'Lﬂ‘ YOS VO

Normal Data:
L =

are clearly correlated in space and
 exhibit a specific structure
\ appropriate for describing |mages
';A LA\ | PCA “AJ«/A»

Normal reglons Anomalous regl ns

‘“ \. > L.'I‘JF1

The random variable model is not very

Boracchi, Trovo



Real World Detection Problems

Random variable model does not successfully apply to signals or images
(not even small portions)
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Real World Detection Problems

Random variable model does not successfully apply to signals or images

(not even small portions)
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Stacking each signal s € R? in a vector x is not convenient:
» Data dimension d can become huge

 Correlation among components is difficult to model
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Real World Detection Problems

Random variable model does not successfully apply to signals or images
(not even small portions)
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Stacking each signal s € R? in a vector x is not convenient:
» Data dimension d can become huge

 Correlation among components is difficult to model

It is not easy to estimate a density model or threat these as realizations
of a random variable

3oracchi, Trovo



Real World Detection Problems

Random variable model does not successfully apply to signals or images
(not even small portions)

|ff.
‘ll".
Vi

Stacking each signal s € R? in a vector x is not convenient:
* Data dimension d can become huge
 Correlation among components is difficult to model

It is not easy to estimate a density model or threat these as realizations
of a random variable

Moreover, when normal data exhibit a peculiar structure, we are
interested in detecting changes/anomalies affecting that structure

Boracchi, Trovo



Real World Detection Problems

Normal patches -> background

 Exhibit a specific structure (geometry) or intensities

A\

Anomalous patches:

e Are rare elements that do not confrom with the background

Boracchi, Trovo



Anomaly Detection Out of the
“Random Variable” World

Model-based approaches for images



The Typical Approach

Most of the considered methods
1. Estimate a model describing normal data (background model) @

2. Provide, for each ést samplg, an anomaly score, or measure of %D,
rareness, w.r.t. the model

3. Apply a decision rule to detect anomalies (typically thresholding) YQ'\‘/MP
VV-?

4. [optional] Perform post-processing operations to enforce smooth
detections and avoid isolated pixels that are not consistent with
neighbourhoods

Remark: Statistical-based approa seen before use as background
model the statistical distributionf ¢, and a statistic as anomaly score

Boracchi, Trovo



The Typical Approach

Most of the considered methods

1. Estimate a model describing normal data (background model)

2. Provide, for each test sample, an anomaly score, or measure of
rareness, w.r.t. the learned model

3. Apply a decision rule to detect anomalies (typically thresholding)

4. [optional] Perform post-processing operations to enforce smooth
detCCtIOnS and A The background model is used to S|Stent W|th

neighborhoods bring an image patch into the

. “random variable world”
Remark: Statistical-ba (remmssfon, emasting, feai: as background

model the statistical extraction...) nomaly score

Boracchi, Trovo




The Typical Approach

Most of the considered methods

1. Estimate a model describing normal data (background model)

2. Provide, for each test sample, an anomaly score, or measure of
rareness, wW.r.t. the learned model

3. Apply a decision rule to detect anomalies (typically thresholding)

4. [optional] Perform post-processing operations to enforce smooth

detections and  once “applied” the background model, one €Nt with
neighborhoods can use most of anomaly detection methods

" tical for the “random variable world”. " q
Remark: Statistical- This might require fitting an Dackgroun

model the statistic additional model naly score

Boracchi, Trovo




The Typical Approach

Different options to learn the background model

* semi-supervised approach, background model is learned exclusively
normal data

* unsupervised approach, background model is fit to both normal and
anomalous but it is robust to outliers

Boracchi, Trovo



Semi-supervised AD methods out of the RVW

Out of the "Random Variable" world
 Detrending-based methods

e Reconstruction-based methods
e Subspace methods

* Feature-based monitoring
* Expert-driven Features
e Data-driven Features

Boracchi, Trovo



Semi-supervised AD methods out of the RVW

Out of the "Random Variable" world

* Detrending-based methods ‘

e Reconstruction-based methods
e Subspace methods

* Feature-based monitoring
* Expert-driven Features
e Data-driven Features

Boracchi, Trovo



... Out of the random variable world

We can “get rid of the structure” by detrending/filtering:

* removing the deterministic/correlated components of the data (e.g. by
computing derivatives, or by polynomial fit) '& L t,-'ﬂ

m_
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t t
(a) Original sequence (b) First differences

But this might not always apply, since we get rid of “all the

structures”, thus also those from anomalous signals.
G.). Ross, D.K. Tasoulis, N.M. Adams "Nonparametric monitoring of data streams for changes in location and scale” Technometrics

53 (4), 379-389, 2011



Semi-supervised AD methods out of the RVW

Out of the "Random Variable" world

 Detrending-based methods

e Reconstruction-based methods

e Subspace methods

* Feature-based monitoring
* Expert-driven Features
e Data-driven Features

Boracchi, Trovo



Reconstruction-based Methods

Fit a statistical model to the observation to describe dependence, apply
anomaly detection on the independent residuals.

Detection is performed by using a model M which represents normal
data:

e During training: learn the mode@rom training set TR
* During testing:
e Reconstruct each test signal s through M.

* Assess the residuals between s and its reconstruction

The rationale is that M can reconstruct only normal data, thus anomalies
are expected to yield large reconstruction errors.

Bengio, Y., Courville, A., Vincent, P. "Representation learning: A review and new perspectives”. IEEE TPAMI 2013



Reconstruction-based Methods

Popular models are:
 autoregressive models for time series (ARMA, ARIMA...)

e neural networks, in particular auto-encoders, for higher dimensional
data

 projection on subspaces / manifolds
 dictionaries yielding sparse-representations

X y/ ﬂootaﬁ/)

The two latter can be also interpreted as subspace methods

Boracchi, Trovo



Reconstruction-based Methods

Autoencoders are non-parametric models (neural networks) trained to
reconstruct data in a training set.

The typical structure of an coder IS:
l
B L :

{ — ]
- o ;
Input layer, S3 Q S3 Output layer,
d neurons @ d neurons
~ % —O " ——
()
Hidden layer,
Q 7n neurons
S T S
d n <L d( d Boracchi, Trovo



Reconstruction-based Methods

Autoencoders are non-parametric models (neural networks) trained to
reconstruct data in a training set The typ|ial loss function is:

Slis - He?)n D¢

SES A /\/\/

and training of D(E(-)) is performed through standard backpropagation

algorithms (e.g. SGD) /'5 _ Dz [SD(‘L

e AE typically does not provide exact reconstruction since n « d.

Remarks

« Additional regularization terms might be included in the loss function

Bengio, Y., Courville, A., Vincent, P. "Representation learning: A review and new perspectives". IEEE TPAMI 2013
Mishne, G., Shaham, U., Cloninger, A., & Cohen, I. Diffusion nets. Applied and Computational Harmonic Analysis (2017).



Monitoring the Reconstruction Error

Detection by reconstruction error monitoring (AE notation)
Training (Monitoring the Reconstruction Error):

1. Train the model D(E(:)) from the training set TR

2. Learn the distribution of reconstruction errors o

err(s) = Hs — 2)(8(5))”2, SEV
over a validation set V # TR and define a threshold y (boo

Testing (Monitoring the Reconstruction Error):
1. Perform encoding and compute the reconstruction error

A

\fP\
LN\

tstrap m

/\

,

err\s) = (|S — S 7{\
(s) = {[s-D(e), ?@W"‘\) @

2. Consider s anomalous when err(s) >y

Boracchi, Trovo



Monitoring the Reconstruction Error

Normal data are expected to yield values of err(s) that are low, while
anomalies do not. This property holds when the model M was specifically
learned to describe normal data

Outliers can be detected by a threshold on err(s)

err(s)

" 4

Boracchi, Trovo



Semi-supervised AD methods out of the RVW

Out of the "Random Variable" world
 Detrending-based methods

e Reconstruction-based methods

‘ * Subspace methods ‘

* Feature-based monitoring
* Expert-driven Features
e Data-driven Features

Boracchi, Trovo



Subspace methods

The underlying assumption is that

* normal data live in a subspace that can be identified by TR

 anomalies can be detected by projecting test data in such subspace
and by monitoring the reconstruction error (distance with the

projection)

7
/

Normal
Data S L Dpata

V. Chandola, A. Banerjee, V. Kumar. "Anomaly detection: A survey". ACM Comput. Surv. 41, 3, Article 15 (2009), 58 pages.




Subspace Methods

A few example of models used for describing normal patches/J/JA;é;

Fourier transform: normal data can be expressed by a few specific
frequencies

PCA: normal data live in the linear subspace of the first components.

Robust PCA: defined on the 1 distance to be insensitive to outliers in
normal data.

Kernel PCA: normal patches live in a non-linear manifold.

Normal
Data Data

Random projections

V. Chandola, A. Banerjee, V. Kumar. "Anomaly detection: A survey". ACM Comput. Surv. 41, 3, Article 15 (2009), 58 pages.



Subspace Methods

A few example of models used for describing normal patches:

* Fourier transform: normal data can be expressed by a few specific
frequencies

e PCA: normal data live in the linear subspace of the first components.

e Robust PCA: defined on the 1 distance to be insensitive to outliers in
normal data.

* Kernel PCA: normal patches live in a non-linear manifold.

UaALIQ Bleq

 Random projections

Normal
Data Data

V. Chandola, A. Banerjee, V. Kumar. "Anomaly detection: A survey". ACM Comput. Surv. 41, 3, Article 15 (2009), 58 pages.




Subspace Methods: Statistics

Compute the the projection over a subspace characterizing normal data,
(x>=PTs, PeR™4  m«d

which is the projection over the first m principal components and a way

to reduce data-dimensionality. When m = d you get perfect

reconstruction on any normal and anomalous data! ?':' PT
* Monitor the reconstruction error:
err(s) = |ls — PP"s|l;* ~
which is the distance between s and its projection PP’s over the !
subspace of normal patches ?@//20 { K

* |Alternatively, monitor the least-principal component only, which like an
anomaly score should be low in normal data.o/

« Alternatively, monitor projections coefficient(x)= P's via multivariate
statistical model/test Ny

Boracchi, Trovo



Fifth Matlab Assignment

Boracchi, Trovo



Fiftth Matlab Assignment

Goal: You have to implement a model based on PCA for detecting
anomalous heart-beats. -

Data: You will be provided with both normal and anomalous ECG signals,
already split and aligned in portions corresponding to an heartbeat.

Annotation are also provided but these can be used for performance

assessment only Va/}\’“*-
TR et A8 TRV i

\1 ﬂ
7 /l,
/\/\/\1 5 P//
- \

L

Boracchi, Trovo






The Data

Vectors arranged in matrices corresponding to normal/anomalous HB

Watch out:

« Each signal is a row vector, as this is how PCA operates (we used
column vectors instead so far)

* |t is convenient to center each sample before applying transformation.
This can be done by subtracting the mean of each sample.

Training and Test set has been already separated in two matrices.
Annotated labels are provided on the test set.

Training set is made of normal data only (semi-supervised settings)

Boracchi, Trovo



Normal HB

normal beat nr 1
A |
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Normal HB
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Normal HB

15

05

-05

normal beat nr 3001

20

40

60

80

100

120

140

160

180
DUI

acchi, Trovo



Anomalous HB

] anomalous beat nr 1
|
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Anomalous HB
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Anomalous HB
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The Model M for normal data

We assume normal data lives in a@—dimensional space that can be
learned from the 7§

We define this projection by truncating the PCA transformation computed

over the training set TS
(YN €< Ol T
o A
. %\({(’ /VThis is the subspace of normal
| The first m components of the fP < HB that is spanned by the first

PCA explain a large percentage

m PCs
of the total variance (say 95%)

ce expl

Normal
D,ata

..
o Data S . .‘
S

principal component index

Boracchi, Trovo



The Projection

Once the first m components of the PCA have been identified, it is
possible to compute the coefficients of the projection over the PCA
subspace Vs € R4

s >Xx=I|sP

Being P € R*™ m «< d, x € R™ are the first m principal components
(i.e. the m columns of the PCA transformation matrix)

Remember now signals are arrange row-wise in vectors

Boracchi, Trovo



The Reconstruction

The reconstructed signal from the

projection is:

Which can be compared with the
Original Signal -0'50 20 40 60 8(.) 100 . 120 140 160 180

' err(s) = [|s — sPPTH2

That can be used as an anomaly

Score S v @

0.8 : . . '
0 20 40 60 80 100 120 140 160 180

Boracchi, Trovo



Different Distributions of err(s)

empirical distributions of err
| |

6

n anomalous

0.5

err

4.5

Boracchi, Trovo



Good Detection by Thresholding

ROC curve, AUC = 0.98655
SRS 2E—R20 ey W22

B0 90.300 346 32 % 30 %19 ~—%).09

1

09-

0.8 .

0 0.2 0.4 0.6 0.8 1
FPR Boracchi, Trovo



Anomaly Detection Based on
Sparse Representations

Boracchi, Trovo



Subspace Methods: Sparse Representations

Basic assumption: normal data live in a union of low-dimensional
subspaces of the input space

The model learned from S is a matrix: the dictionary D.

Each signal is decomposed as a sum of a few dictionary atoms
(representation is constrained to be sparse).

Atoms represent the many building blocks that can be used to reconstruct
normal signals.

There are typically more atoms than the signal dimension.

Effective as long as the learned dictionary D is very specific for normal
data

M. Elad "Sparse and Redundant Representations: From Theory to Applications in Signal and Image Processing”, Springer, 2010



Dictionaries Yielding Sparse Representations

Dictionaries are just matrices! D € R&*™




Dictionaries Yielding Sparse Representations

Dictionaries are just matrices! D € R&*™

Each column is an atom:

 lives in the input space

it is one of the learned building blocks
to reconstruct the input signal




Sparse Representations

Let s € R™ be the input signal, a sparse representation is
M

S=Zaidi

i=1
a linear combination of few dictionary atoms {d;}, i.e., most of
coefficients are such that a; = 0

An illustrative example in case of our patches

+0.1 =




Sparse Representations... Matrix Expression

Let s € R™ be the input signal, a sparse representation is
M

s = Z a;d; = Da
i=1
a linear combination of few dictionary atoms {d;} and ||a||, < L, i.e. only
a few coefficients are nonzero, i.e. & is sparse.

D a This vector

a = [al, . O(M]
ﬁ;ﬂ ° E is sparse




Sparse Coding...

Sprase Coding: computing the sparse representation for an input signal s

w.r.t. D
s€ RY ) a € R"

It is solved as the following optimization problem, (e.g. via the Orthogonal
Matching Pursuit, OMP)

a = argmin |[Da —s]|, s.t. ||la]l, <L
acR"?

d AR BL™ 7,

a= 0.7 —0.2

In the previous illustration a = |0. 7 0,0, 0 1, 0 0,0,—0.2]

Pati, Y.; Rezaiifar, R.; Krishnaprasad, P. Orthogonal Matching Pursuit: recursive function approximation with application to wavelet decomposition. Asilomar Conf. on
Signals, Systems and Comput. 1993



.. and Dictionary Learning XA g

A.>
Dictionary Learning: estimate D from a training set of M & B
e Raxm ¢ vl
S={s1,--Su} ﬁ D € R4xn R - A
It is solved as the following optimization problem typically through bld’cki

coordinates descent (e.g. KSVD algorithm)
D, X] = argmin 1AY =Sl s.t. lyillo <L,  Vy;

AE ]Rdxn YE ]RTLXM

AN Al -
[TV

Aharon, M.; Elad, M. Bruckstein, A. K-SVD: An Algorithm for Designing Overcomplete Dictionaries for Sparse Representation IEEE TSP, 2006
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Sparse representation monitoring: statistics

Anomalies can be directly detected during the sparse coding stage, by
changing the functional being optimized.

A set of test signals is modeled as:
S=DX+E+V

where X is sparse, IV is a noise term, and E is a matrix having most
columns set to zero. Columns e; # 0 indicate anomalies, as they do not
admit a sparse representation w.r.t. D

A. Adler, M. Elad, Y. Hel-Or, and E. Rivlin, “Sparse coding with anomaly detection” Journal of Signal Processing Systems, vol. 79,
no. 2, pp. 179-188, 2015.



Sparse representation monitoring: statistics

Anomalies can be detected by solving (through ADMM) the following
sparse coding problem

(1
argmin (E IS — DX .— Ell + AllX|l; + M||E!|z,1>
X,E

Data-fidelity for normal data Sparsity Group sparsity

regularization, only a few
columns can be nonzero

.. and identifying as anomalies the signals corresponding to columns of E
that are nonzero.

A. Adler, M. Elad, Y. Hel-Or, and E. Rivlin, “Sparse coding with anomaly detection” Journal of Signal Processing Systems, vol. 79,
no. 2, pp. 179-188, 2015.



If you want to know more:
«Learning Sparse Representations for Image
and Signal Modeling»

PhD course 2021

Boracchi, Trovo



Semi-supervised AD methods out of the RVW

Out of the "Random Variable" world
 Detrending-based methods

e Reconstruction-based methods
e Subspace methods

* Feature-based monitoring

* Expert-driven Features

e Data-driven Features

Boracchi, Trovo



Monitoring Features

Feature extraction: meaningful indicators to be monitored which have a known /
controlled response w.r.t. normal data

Signals Random variables

Input signal eature Change/Anomaly
vector detector

C) QBO(x(t)) S

x(t) € R?

 d<<p
Feature Extraction: signal processing, The customary framework for
a priori information, learning methods change / anomaly detection

V. Chandola, A. Banerjee, V. Kumar. "Anomaly detection: A survey". ACM Comput. Surv. 41, 3, Article 15 (2009), 58 pages. Boracchi, Trovo



Feature Extraction

The peculiar structures of normal images and signals suggest that normal
data live in a manifold having lower dimension than the input domain

Data dimensionality can be reduced by extracting features

Good features should:
* Yield a stable response w.r.t. normal data
* Yield unusual response on anomalies / when data change

Reconstruction error and representation coefficients can be considered
features.

Features can be monitored in either one-shot/sequential monitoring
schemes.

V. Chandola, A. Banerjee, V. Kumar. "Anomaly detection: A survey". ACM Comput. Surv. 41, 3, Article 15 (2009), 58 pages.



Feature Extraction approaches

There are two major approaches for extracting features:

« Expert-driven (hand-crafted) features: computational expressions that
are manually designed by experts to distinguish between normal and
anomalous data

« Data-driven features: features characterizing normal data are R
automatically learned from training data TR 7 é
|

— RrR ! |
/\/\/\/\/\/\ . -+ -«
L
R 4?

Boracchi, Trovo



Semi-supervised AD methods out of the RVW

Out of the "Random Variable" world
 Detrending-based methods

e Reconstruction-based methods
e Subspace methods

 Feature-based monitoring

* Expert-driven Features

e Data-driven Features

Boracchi, Trovo



. RaFis
Examples of Expert-Driven Features g

Expert-driven features: each patch of an image s
s, ={s(c+u),u €U}
Example of features are:
* the average,

e the variance,
« the total variation (the energy of gradients)

These can hopefully distinguish normal and anomalous patches (since
image in anomalous region is expected to be flat or without edges

characterizini normal reiions% - - - ‘.

Carrera D., Manganini F,, Boracchi G., Lanzarone E. "Defect Detection in SEM Images of Nanofibrous Materials", IEEE Transactions on Industrial Informatics 2017




Semi-supervised AD methods out of the RVW

Out of the "Random Variable" world
 Detrending-based methods

e Reconstruction-based methods
e Subspace methods

* Feature-based monitoring

* Expert-driven Features

e Data-driven Features

Boracchi, Trovo



Examples of Data-Driven Features

Analyze each patch of an image s
s, ={s(c+u),u €U}

and determine whether it is normal or anomalous.

Data driven features: expressions to quantitatively assess whether test
patches conform or not with the model, learned from normal data.

AN P4

Carrera D., Manganini F., Boracchi G., Lanzarone E. "Defect Detection in SEM Images of Nanofibrous Materials", IEEE Transactions on
Industrial Informatics 2017, 11 pages, doi:10.1109/T11.2016.2641472




« . B L%
A Learned Dictionary from normal patches g

Example of training patches Few learned atoms (BPDN-based learning)

Yh AN B
Fo AT,
el el |7

-
J—
. B

iracchi, Trovo



Data-Driven Features el

To assess the conformance of s, with D we solve the following
Sparse coding:

a = argmin|| D& — s||5 + A||&|l, A>0
acR™?

which is the BPDN formulation and we solve using ADMM.

The penalized £ formulation has more degrees of freedom in the
reconstruction, the conformance of s with D have to be assessed
monitoring both terms of the functional

Boyd S., Parikh N., Chu E., Peleato B., Eckstein ., "Distributed optimization and statistical learning via the alternating direction
method of multipliers” 2011



Data-driven features

Features then include both the reconstruction error
err(s) = ||Da — s||3

and the sparsity of the representation
lell4

Da — S||%]

Thus obtaining a data-driven feature vector x = [” 1l
allq

Boracchi, Trovo



Density-based monitoring on Data-driven features

Anomalies
3
12 |
w . \Tﬁ\ 11 120
- 8 I |
|
o ey 12
/e )
N e °))
© = i..ja-i;f"l
a4 Ve d

Normal patches:

ol . fh _
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Reconstruction Error
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Data-driven features

Training:
* Learn from TR\V the dictionary D

» Learn from V, the distribution ¢, of normal features vectors x.

Testing:
« Compute feature vectors x via sparse coding

* Detect anomalies when ¢4(x) <7

Carrera D., Manganini F.,, Boracchi G., Lanzarone E. "Defect Detection in SEM Images of Nanofibrous Materials", IEEE Transactions on
Industrial Informatics 2017, 11 pages, doi:10.1109/T11.2016.2641472



Data-driven features

Training:
* Learn from TR\V the dictionary D

« Learn from V, the distribution ¢, of normal features vectors x.

Testing:
* Compute feature vectors x via sparse coding

* Detect anomalies when ¢y(x) <7

This solution is rather flexible and can be adapted when operating
conditions changes (e.g. different zooming level)

Carrera D., Boracchi G., Foi A., Wohlberg B. "Scale-invariant Anomaly Detection With multiscale Group-sparse Models" ICIP 2016
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Feature-based Methods

Autoencoders can be also used in feature-based monitoring schemes,
where the hidden representation of the input is the feature being
monitored

Encoder € Deco‘der D
|
[ \ !

s () i 51

" EONSC ;
Input layer, S3 Q S Output layer,
d neurons Q d neurons

» O 0 "

Hidden layer,
n neurons
Sd Q n<«<d Sd .
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Monitoring Feature Distribution .

L'Q.D(it‘)[w;‘
Detection by feature monitoring (AE notation) ( ( /&
Training (Monitoring Feature Distribution): T@ ~ SV Vv
. f‘(éai'n‘the autoencoder D(E(+)) from the training set S SAV* 3

* Fit a density model ¢, to the encoded features

{g(S),S S V} \>
over a validation set[ ::S R T
. . = 5 Z (s)
* Define a suitable threshold y for |¢o(5)

Testing (Monitoring Feature Distribution):

/\
s —= 05y P

* Encode each incoming signal s through &
* Detect anomalies if ¢po(E(s)) <y

Boracchi, Trovo



Monitoring Feature Distribution

Normal data are expected to yield £(s) that are i.i.d. vectors (or features)
and that follow an unknown distribution ¢,.

Anomalous data do not, as they follow ¢; # ¢,.

We are back to our statistical framework and we can

« learn ¢, from a set features extracted from normal data
« detect anomalous data by computing x = £(s) and then check whether ¢4 (x)

x(t)

0(x)
—
°

e () [ ® o

- t

~chi, Trovo



Deep Learning Features

Boracchi, Trovo



CNNs as data-driven feature extractor

The super-human performance achieved by CNNs in many fields indicates
these are very powerful feature extractors.

Not surprisingly, these have been also used for anomaly detection, giving
rise to multiple approaches:

* Transfer learning

* Autoencoders

* Self-supervised learning
 Domain-based

 (enerative-based

Boracchi, Trovo



CNNs as data-driven feature extractor

Extract high-level features from pixel data Classify
A A

Convolution layers I(ully connected layers

~ ~\,‘-.1-\7:.‘.7‘::>: i | Y 256X1
X2 1024x1
1024 4096x1

Boracchi, Trovo



CNNs as data-driven feature extractor

The feature vector extracted from the last
layer can be modeled as a random vector

Extract high-level features from pixel data \Classify
A A

Convolution layers I(ully connkcted layers

Boracchi, Trovo



CNNs as data-driven feature extractor

e | Transfer learning

e Autoencoders
* Self-supervised learning
* Domain-based

 (enerative-based

Boracchi, Trovo



Transfer Learning Supervised CNNs for AD

ldea:

« Use a pretrained network CNN (e.g. AlexNet), that was trained for a
different task and on a different dataset

« Throw away the last layer(s) o € 3D

Use the CNN to build a new data,ét/TR’ from TR:

TR' = @i), s; € TR)

Train your favorite anomaly detector on TR’

Boracchi, Trovo



Transfer Learning Supervised CNNs for AD

* Features extracted from a CNN, i.e.,hﬁ(s)&‘f(yp)ically very large for
deep networks (e.g. ResNET). Reduce data-dimensionality by PCA

defined on a set of normal features

 Anomalies can be detected by measuring distance w.r.t. normal
features, possibly using clustering to speed up performance.

e Thresholds can be computed by the three-sigma rule or bootstrap.

Napoletano P., Piccoli F., Schettini R., "Anomaly Detection in Nanofibrous Materials by CNN-Based Self-Similarity", Sensors 2018



Transfer Learning Supervised CNNs for AD

Pros: pretrained networks are very powerful models, since they usually
trained on datasets with million of images

Cons: the network is not trained on normal data. Meaningful structures in
normal images might not be successfully captured by network trained on
images from a different domain (e.g. medical vs natural images)

Boracchi, Trovo



CNNs as data-driven feature extractor

* Transfer learning

* | Autoencoders

* Self-supervised learning
 Domain-based

 (enerative-based

Boracchi, Trovo



Autoencoders (revisited)

@ =
S & :r/"'/:‘

Encoder &€ Decoder D

Autoencoders can be trained directly on normal data by minimizing the
reconstruction loss:
5
> s = pE®),

SETR

Slide Credits Diego Carrera



Autoencoders (revisited)

Encoder € K Decoder D

P ———

We can fit a density model (e.g. Gaussian Mixture) on a = £(s):

a~ z TiPu;z;»

l

Where ¢, 5. is the pdf of M (u;, Z; )

Slide Credits Diego Carrera



Em-algorithm for Gaussian Mixtures
/?(05
Gaussian Mixture parameters {m;, u;, Z;} are typically estimated from a training set
{a,,},,via EM-algorithm, which iterates the E-step and M-step
e E-step: compute the membership weights\y’ ~for each training sample a,,
Vi = nl(p”lizl(qﬂ)
e Zk T[k(pﬂk,f.k (an)

Y1~ 1
Y2 ~ 0

Slide Credits Diego Carrera



Em-algorithm for Gaussian Mixtures

Gaussian Mixture parameters {m;, u;, Z;} are typically estimated from a training set
{a,, },,via EM-algorithm, which iterates the E-step and M-step

* E-step: compute the membership weights y,,; for each training sample a,

_ ﬂifﬂui,zi(“n)

B Dk TP, s, (An)

yn,i

Slide Credits Diego Carrera



Em-algorithm for Gaussian Mixtures

Gaussian Mixture parameters {m;, u;, Z;} are typically estimated from a training set
{a,, },,via EM-algorithm, which iterates the E-step and M-step

* E-step: compute the membership weights y,,; for each training sample a,
ni(pﬂi,zi(an)

Zk Ty (pﬂk,f.k (an)

Vni =
-

Y1~

/\ | Y2 ™5

(44

| =N =

Slide Credits Diego Carrera



Em-algorithm for Gaussian Mixtures

Gaussian Mixture parameters {m;, u;, Z;} are typically estimated from a training set
{a,, },,via EM-algorithm, which iterates the E-step and M-step

* E-step: compute the membership weights y,,; for each training sample a,
_ ni(pﬂi,zi(an)
Zk T[k(pﬂk,f.k (an)

 M-step: update the parameters of the Gaussian Mixture

yn,i

T = %Zn Vn,i

. XnVniln

B Zn¥n,i

Zi — 2n Vn,i(“n_ﬂi)(“n_ﬂi)T
Zn¥n,i

i
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Em-algorithm for Gaussian Mixtures

Gaussian Mixture parameters {m;, u;, Z;} are typically estimated from a training set
{a,, },,via EM-algorithm, which iterates the E-step and M-step

* E-step: compute the membership weights y,,; for each training sample a,

_ ni(pﬂi,zi(an)
yn,i B w R (e O\

The whole procedure can be initialized by a k-means
* M-step: up round to identify the GM parameters

T = %Z Vn,i
_ 2n Vn,i®n
Zn¥n,i
Zi — 2n Vn,i(“n_ﬂi)(“n_ﬂi)T
Zn¥n,i

i

Slide Credits Diego Carrera



Autoencoders (revisited)

Encoder &€ Decoder D

We can compute the likelihood of a test sample s as:

£(8) = ) Moz, (E()),

l

Slide Credits Diego Carrera



Autoencoders (revisited)

Encoder &€ Decoder D

We can compute the likelihood of a test sample s as:

£(8) = ) Tz, (E(5),

l

The autoencoder and the Gaussian Mixture are not jointly learned!

Slide Credits Diego Carrera



Joint learning of autoencoder and density model

Idea: given a training set of N samples use a NN to predict the
membership weights of each sample

T = !

S

o 4
Estimation Network €-5'%

Q.0 0’000
JOOCO000

ONONONONONONO

a @

Zong et al, “Deep Autoencoding Gaussian Mixture Model for Unsupervised Anomaly Detection”, ICLR 2018



Joint learning of autoencoder and density model

Idea: given a training set of N samples use a NN to predict the
membership weights of each sample

\\\
A\
"\
N
\
N
\
\

S S,
Estimate the GM parameters as: Estimatiog Network
T =y D T
N ' e O
n O 0
_ din Yni@n 'o Q
O Zn Vn,i(an - ﬂi)(an - ﬂi)T g
l nVn M-step a

Zong et al, “Deep Autoencoding Gaussian Mixture Model for Unsupervised Anomaly Detection”, ICLR 2018



J( The parameters of (m;, u;, 2;), can be entirely expressed w.r.t. y;

The network training loss is a sum encompassing:
* Reconstruction error ||s — 5|, 4—

* The negative log-likelihood of £(s) for all the training samples w.r.t the identified GM

e Reguarization term for the GM of the mixtures to avoid singular X;

The last two terms are parametrized on y;, thus it is possible to backpropagate

S T a - Sr
Estimate the GM parameters as: Estimatiog Network
1
L TN ' = AN =
TT; Nzyn,l o oo -
" Ce e 70
C— Zn Vn,i®n o o <0
l Znyn,i 8 g g
Y = Zn Vn,i(an _ ﬂi)(an — ﬂi)T o
| Zn¥n, M-step a V | E-step

Zong et al, “Deep Autoencoding Gaussian Mixture Model for Unsupervised Anomaly Detection”, ICLR 2018



CNN as data-driven feature extractor

e Transfer learning

e Autoencoders

e | Self-supervised learning These other approaches requires a few more
notions of Deep Learning and are out of scope for
* | Domain-based this course...

If you are interested in knowing more, come to our

Generative-based A2NDL course!

Boracchi, Trovo



Domain Adaptation



Example of Domain Adaptation Questions

These are rather common questions when using an classifier for images

e Can we train classifiers with Flickr photos, as they have already been
collected and annotated, and hope the classifiers still work well on
mobile camera images?

* Image classifiers optimized on benchmark dataset often exhibit
significant degradation in recognition accuracy when evaluated on
another one

Boracchi, Trovo



Problem Formulation

Consider a classification problem from an input space to a label space
X->Y

And denote by
e Adomain D = {J_g, ¢, } such that x ~ ¢,

« Atask T ={UY, d(- |x)} which consists in associating the label to an
input x

S. ). Pan and Q. Yang, ”A survey on transfer learning”, TKDE 2010.



Problem Formulation 'y /ZQ}( DY

%y
Definition: Transfer Learning/ 4><>, X /

Given a source domain Dg and learning task Js, a target domain@ and
learning task[@ transfer learning aims to help improve the Tearning of
the target predictive function K in Dt using the Rnowledge in Ds and T,

where D¢ # Dy or I # It

—

§b5 /’(}? ﬁbﬂ’/ lT?
— 1/

oV € . ol
_E_"i'(al:/k'\ J‘th - 7(06“

S. ). Pan and Q. Yang, ”A survey on transfer learning”, TKDE 2010.



Problem Formulation

Remarks:

D¢ + D7 implies that either
« Xs #+ X (e.g. different input size / features)
« ¢y #+ ¢ (e.g. different style of an image)

Js # J7 implies that either
* Ys # Yr (e.g. new labels in target)
« d°(y|x) # T (y|x) (e.g. different class imbalance between S and T)

Obviously, D¢ = D and Jg = T+ corresponds to traditional machine
learning settings



Example: Xs# X7 same task, different domains

Classification of documents in different languages

Images of different sizes

Colour vs grayscale images

Daytime vs Nigh-time




Example: ¢ # ¢

<7
-
Clipart

—7 3
O, E
=

'b >
S,qg

l\mk Bed Bike Kettle

Spoon Sink

P —— /

N

Venkateswara, H., Eusebio, J., Chakraborty, S., & Panchanathan, S. (2017). Deep hashing network for unsupervised domain
adaptation. CVPR 2017



Example: Y¢ + Y different task, same domains

(b) CIFAR-10 (c) CIFAR-100
\



. AS T
Example: ¢°(y|x) # ¢ (¥|x)
In the case of text classification, words might have a different meaning
depending on the domain
Consider
Dq : articles from newspapers

Dy articles from a computer magazine

The word «monitor» in the two context is very likely to have different
meanings, leading to different classes of documents in each domain



Standard Settings

Consider a classification problem where we are provided with
TR = {(x0,Y0), -, (Xn, Yn) € XsX Ys}
That are from the source domain Dg and representative of Jc.

You are asked to prepare a classifier K that is able to operate in the
target domain D1 to address the task J7

Usually there are other constraints over the target domain (task), such
that little or even no supervised information is provided.

S. ). Pan and Q. Yang, ”A survey on transfer learning”, TKDE 2010.



Supervised Case

The fully supervised case:

e we have access to
TRs = {(x0,Y0), -+, (X1, ¥n) € XsX Ys}

a large, annotated corpus of data from the source domain Dg and
representative of 7. ) -

 we spend a little money to annotate a small corpus in the target
domain D7 and representative of Ty

TRy = {(x0,Y0), - Ky Ym) € XX Yr}

Thus m < n.

“‘

Goal: learn a classifier K that is very accurate in Dy to solve the task Ty

Boracchi, Trovo



Unsupervised Case

The fully unsupervised case:

e we have access to
TRs = {(x0,Y0), -+, (X1, ¥n) € XsX Ys}

a large, annotated corpus of data from the source domain D¢ and
representative of J's.

* we have no annotations over Dy

!XT ?: {x0, ..., Xy € X7}

And m might be even larger than n.

Goal: learn a classifier K that is very accurate in Dy to solve the task Ty

Boracchi, Trovo



Does this remind you something’

Boracchi, Trovo



Connection with Concept Drift

It’s the same problem to be addressed in Datastreams affected by Concept
Drift, but without

 Temporal dimension
 Need to detect changes

You are given a training set that is (stationary) from the source domain
and you have to operate in a different (stationary) target domain

source t  target

Feature 2 >
Feature 2

¢ ' Feature 1 i 21 Feature 1 i

Pl X )= p (| X (d)
1(| ) (| ) Boracchi, Trovo



Major Approaches to Domain Adaptation

Boracchi, Trovo



Transfer Learning Taxhonomy

Labeled data are available
in a target domain

4

Case | «

> Self-taught

Pl

No labeled data in a source domain

Learning

Inductive Transfer ]

J

Labeled data are available in a source domain

Transfer —— | Labeled data are

Learning available only in a
source domain  § >

\

Y

No labeled data in
both source and
target domain

Transductive

Learning
. Source and Multi-task
Case 2 [‘ target tasks are §>» :
learnt Learning
simultaneously
Assumption:
different > Domain

Transfer Learning <— domains but

\

single task

—— Adaptation

Assumption: single
domain and single task

N

Unsupervised

Transfer Learning

S. J. Pan and Q. Yang, ”A survey on transfer learning”, TKDE/2010. ]

S

Sample Selection Bias
/Covariance Shift



Reweighting

Correct a sample bias by reweighting source labeled data:
source instances close to target instances are more important
Motivations:
« Domains share the same support (i.e. bag of words)
 Distribution shift is caused by sampling bias/shift between marginals

ldea:

* Reweight or select instances to reduce the discrepancy between source
and target domains

Boracchi, Trovo



Supervised Reweighting

Reweight or select instances to reduce the discrepancy between source
and target domains | Y = X¢

Supervised case: (wherefys = ﬂ it is possible to train a classifier over
TR U TR; by weighting more the loss over instances from TRy (or by
resampling TR)

o/ % 0

o o

OOf** 080
0 o0 O

Boracchi, Trovo



Unsupervised Reweighting over TR¢

Estimate qux and ngx from@nd@and compute
W, = ¢T x(xl)‘/
l ¢S,x(xl)

Train a classifier to minimize the weighted loss

LrR) = Y willk@) =yl R

)/LLE—XS

Xi€ETRg
w /%’R%U ET Z) TRs U X; and reweighting
5 O % R . o O,
OO ol O -‘* O o-'* K

® . .
® Boracchi, Trovo



Feature-based Methods

Find a common space where source and target are close (projection, new
features, etc)

Change the feature representation X to better represent shared
characteristics between the two domains

 some features are domain-specific,

e others are generalizable

e or there exist mappings from the original space
ldea:

* Make source and target domain explicitly similar

 Learn a new feature space by embedding or projection

Boracchi, Trovo



Supervised, Feature-based Methods

Train a classifier K over TR K Teel TRy

.. : g =X
_gUse the output of K¢ as an additional feature to train the classifier Ky Xs= %7

over augmented features A+ Xr [ X,

[xi; Ks ()] K<)
Or, train a joint classifier over an augmented training set TR, where
inputs are defined as:

x; = |x;; x;; 0] when x; from TR
x; — [x;;0; x;] when x; from TR

During operations augment everything as in TR

Daumé Ill, H. Frustratingly easy domain adaptation. ACL 2007



Unsupervised Domain Adaptation
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Ganin, Y., & Lempitsky, V. Unsupervised domain adaptation by backpropagation. ICML 2015



Unsupervised Domain Adaptation

MNIST — MNIST-M: top feature extractor layer

(a) Non-adapted (b) Adapted

Ganin, Y., & Lempitsky, V. Unsupervised domain adaptation by backpropagation. ICML 2015



