

Esercitazione 4

Codifica Binaria

Conversione da base 10 a base 2

$$55_{10} \rightarrow ?_2$$

Metodo divisioni successive → continuo a dividere per 2 fino a raggiungere 0 riportando il resto

$$55_{10} \rightarrow 110111_2$$

Verifica: $\sum_{i=0}^{m-1} 2^{i} a_{i}$ per tornare in base 10

$$110111_2 = 1*2^5 + 1*2^4 + 0*2^3 ... + 1*2^0 = 32 + 16 + 4 + 2 + 1 = 55$$

Convertire in base 2:

- 528₁₀
- 317₁₀

528 317

Conversione da base 10 a base 8

$$55_{10} \rightarrow ?_8$$

Convertire in base2, raggruppare le cifre a gruppi di 3 e convertire in base10 i gruppi. Il risultato è la conversione in base 8.

Conversione da base 10 a base 16

$$55_{10} \rightarrow ?_{16}$$

Convertire in base2, raggruppare le cifre a gruppi di 4 e convertire in base10 i gruppi. Il risultato è la conversione in base 16.

$$55_{10} \rightarrow 110111_2$$

$$0011 \ 0111_2 = 37_{16}$$

N.B. Aggiungere eventuali 0 per completare l'ultimo gruppo da 4 cifre

Convertire in base8 e in base16 :

- 219₁₀
- 177₁₀

219

177

Operazioni - Addizione

Vengono eseguite come normali addizioni in colonna ricordando che

Somma	Risultato	Resto
0+0	0	0
0+1 (1+0)	1	0
1+1	0	1
1+1+1	1	1

Esempio:

Esegui le seguenti somme in base2:

•
$$19_{10} + 10_{10} =$$

•
$$28_{10} + 113_{10} =$$

Convertiamo in base2:

____=

Convertiamo in base2:

Complemento a 2

Rappresentazione utilizzata per rappresentare numeri negativi in codice binario. La prima cifra del numero in CP2 è il <u>segno:</u>

- Positivi: 0
- Negativi: 1

Detto *m* il numero di bit disponibili è possibile rappresentare tutti i numeri comprese tra:

$$X \in (-2^{m-1}; 2^{m-1}-1)$$

NB 0 in CP2 è una sequenza di m 0

Conversione da decimale a CP2

- 1. Controllo che $X \in -2^{m-1}$, $2^{m-1} 1$, altrimenti m bit non bastano
- 2. Se X è positivo, scrivo X utilizzando m bit NB: ricordandosi di aggiungerei zeri se necessario all'inizio del numero!
- 3. Se X è negativo:
 - a. Scrivo |X| utilizzando m bit
 - b. Complemento tutti i bit di X (1 \rightarrow 0, 0 \rightarrow 1)
 - c. Sommo 1 al numero ottenuto

Conversione da CP2 a decimale

ESEMPIO -25

Per rappresentare -25 servono m=6 bit \rightarrow -2^{m-1}= -32

Conversione 25 in base 2 espresso in 6 bit: 011001

Complemento (inversione 1 e 0): 100110

Sommo 1

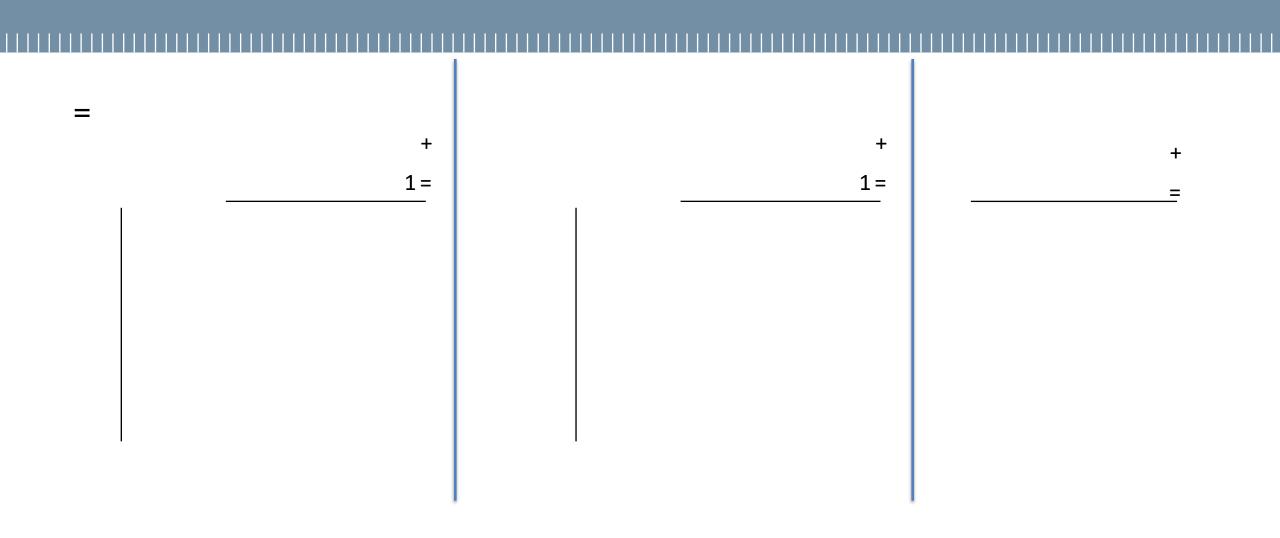
Conversione CP2 a base10

Detto a_i il valore dell'i-esimo bit e m il numero di bit:

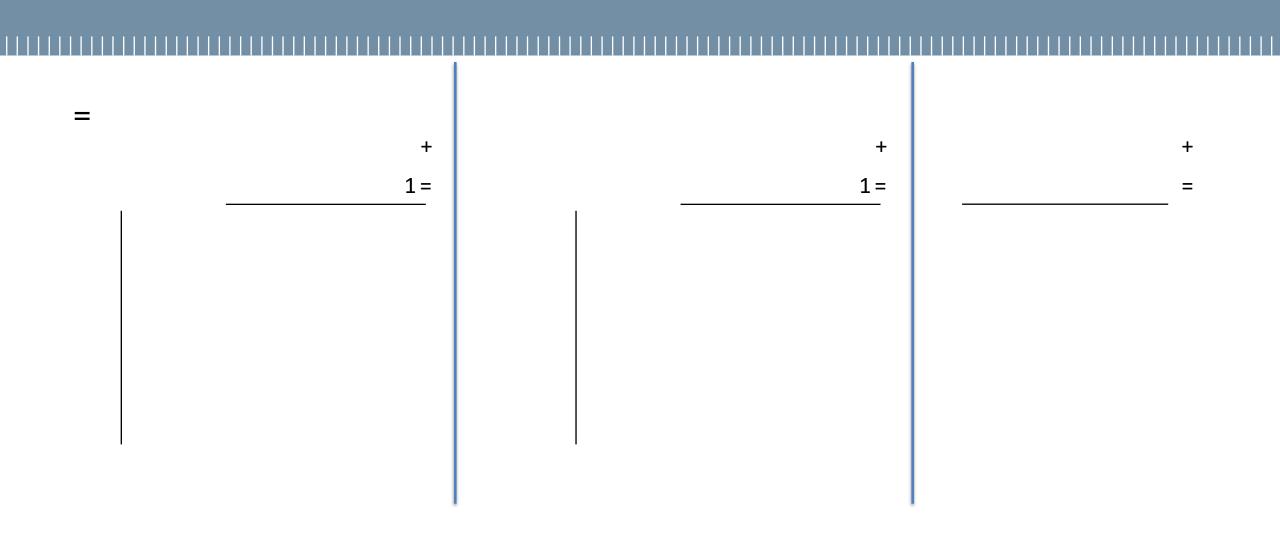
$$X_{10} = -a_{m-1} * 2^{m-1} + \sum_{i=0}^{m-2} a_i * 2^i$$

ES.
$$(100111)_{CP2}$$
= $-1*2^5 + 0*2^4 + 0*2^3 + 1*2^2 + 1*2^1 + 1*2^0 = 25$

Operazioni in CP2


Numeri di segno opposto possono essere sommati effettuando la conversione in CP2 (es. 21-5 = 21+(-5) convertiti in CP2)

ESERCIZIO 4


Calcolare il risultato delle seguenti operazioni in CP2

- 33-25 = ? (m=)
- -25 -43=? (m=)

Esercizio 4.1

Esercizio 4.2

