

Esercitazione 1:

esercizi con Algebra di Boole, IF e WHILE

Richiamo, Tabelle di Verità

а	b	a &&b	a b	~a	xor(a,b)
0	0	0	0	1	0
0	1	0	1	1	1
1	0	0	1	0	1
1	1	1	1	0	0

Or esclusivo: vero quando è vera solo uno delle due espressioni coinvolte Xor(a,b) == a | | b && (~(a AND b))

Operatori Logici: Forma Generale

Operatori binari: **AND** (&&, oppure &, oppure and), **OR** (||, oppure |, oppure or), **XOR** (xor):

a OP1 b per la notazione simbolica OP(a,b) per la notazione testuale

Operatori unari: NOT (~):

OP2 a

a,b possono essere variabili, costanti, espressioni da valutare, scalari o vettori (dimensioni compatibili)

Valori numerici di a, b vengono interpretati come logici:

- 0 come falso
- tutti i numeri diversi da 0 come vero

Aritmetica Operatori Logici

Ordine Operatori Logici in assenza di parentesi (elementi a priorità maggiore in alto):

- 1. negazione (NOT) ~
- operatori di relazione <, >, <=, >=
- uguaglianza ==, disuguaglianza ~=,
- 4. congiunzione (AND) &&
- 5. disgiunzione (OR) | |

Esempio

$$-x > 0 \mid \mid y == 3 && \sim (z > 2)$$

- $(x > 0) \mid \mid ((y == 3) && \sim (z > 2))$

Aritmetica degli Operatori Logici

Gli operatori & e | | sono commutativi

$$- (a \&\& b) == (b \&\& a)$$

$$- (a | | b) == (b | | a)$$

Le doppie negazioni si elidono: ~~a == a

Tabelle di Verità

Rappresenta tutti i possibili modi di valutare un' espressione booleana composta

Una riga per ogni possibile assegnamento di valori logici alle variabili:

- n variabili logiche (espressioni booleane) $\rightarrow 2^n$ possibili assegnamenti, quindi 2^n righe.

Una colonna per ogni espressione che compone l'espressione data (inclusa la formula stessa)

Esempio Tabella di Verità

Compilare la tabella di verità della seguente espressione:

A && ~B || C

Esempio Tabella di Verità

A	&& ~B C					
	A	В	С			

Altro Esempio di Tabella di Verità

A && (~B || C)

Altro Esempio di Tabella di Verità

A	&&	(~B		C)
---	----	-----	--	----

A	В	С		

Operatori Logici: Leggi di de Morgan

Leggi di De Morgan: illustrano come distribuire la negazione rispetto a | | e &&

1.
$$\sim$$
 (a && b) == \sim a || \sim b

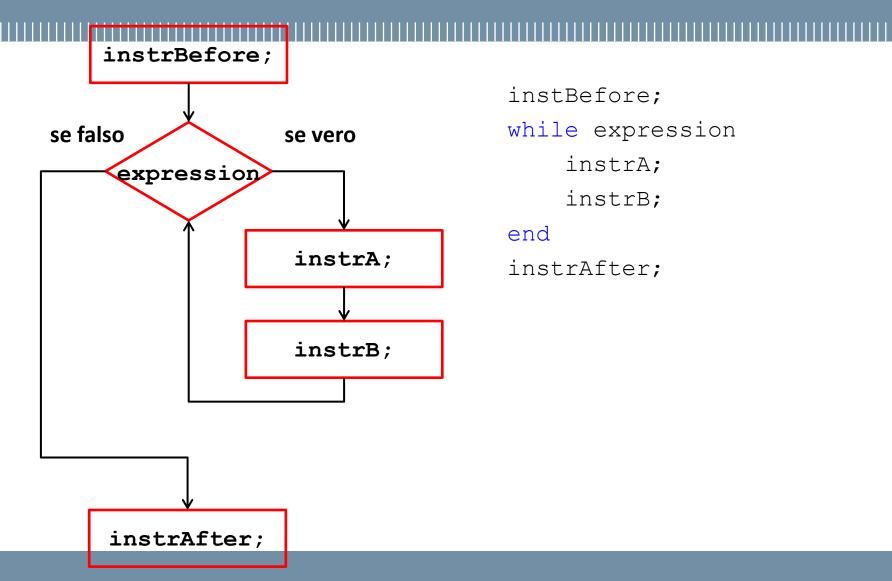
2.
$$\sim$$
 (a | | b) == \sim a && \sim b

Esempio

Dimostrare che le seguenti espressioni sono equivalenti

Due possibili soluzioni:

- Applicando le leggi di De Morgan cerco di passare da una all'altra
- Calcolo entrambe le tabella di verità e mostro che coincidono


Esempio

Dimostrare che le seguenti espressioni sono equivalenti

Ripasso costrutto IF

Ripasso ciclo While

Programma 1: Anno bisestile (Boole)

- Scrivere uno script MATLAB che permette all'utente di inserire un anno.
- Il programma verifica se tale anno è BISESTILE o meno e stampa un opportuno messaggio.

Si ricorda che un anno è bisestile se è multiplo di 4 ma non di 100 oppure è multiplo di 400.

Hint: usare condizione booleana

Programma 2: Successione di Fibonacci

Scrivere un programma che stampa a video la successione di Fibonacci.

Hint:

La successione di Fibonacci è una sequenza di numeri dove, a partire dal terzo, ogni numero è la somma dei due precedenti.

Hint: Usare un ciclo WHILE

Es: 0 1 1 2 3 5 8 13 ...

Programma 3: Minimo comune multiplo

Scrivere un programma per calcolare il minimo comune multiplo di due numeri.

Hint:

Usare ciclo WHILE

Usare funzione 'mod'

Programma 4: Output grafici

Triangolo basso

Triangolo alto

Scacchiera