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Abstract

The design of effective bandit algorithms to learn the optimal price is a task
of extraordinary importance in all the settings in which the demand curve is
not a priori known and the estimation process takes a long time, as customary,
e.g., in e-commerce scenarios. In particular, the adoption of effective pricing
algorithms may allow companies to increase their profits dramatically. In this
paper, we exploit the structure of the pricing problem in online scenarios to
improve the performance of state-of-the-art general-purpose bandit algorithms.
More specifically, we make use of the monotonicity of the customer demand
curve, which suggests the same behaviour of the conversion rates, and we exploit
the fact that, in many scenarios, companies have a priori information about the
order of magnitude of the conversion rate. We design techniques—applicable in
principle to any bandit algorithm—capable of exploiting these two properties,
and we apply them to Upper Confidence Bound policies both in stationary
and nonstationary environments. We show that algorithms exploiting these
two properties may significantly outperform state-of-the-art bandit policies in
most of the configurations and we also show that the improvement increases as
the number of arms increases. In particular, simulations based on real-world
data show that our algorithms may increase the profit by 300% or more when
compared to the performance achieved by state-of-the-art bandit algorithms.
Furthermore, we formally prove that the empirical improvement provided by our
algorithms can be achieved without incurring any cost in terms of theoretical
guarantees. Indeed, our algorithms present the same asymptotic worst-case
regret bounds of the bandit algorithms previously known in the state of the art.

1. Introduction

We focus on the problem of learning the best price to apply to a good
(a.k.a. pricing problem) when a seller has an unlimited amount of non-perishable
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goods in online scenarios [1]. Although such a setting is basic, it perfectly fits
with (or is a sufficiently accurate approximation of) many real-world applica-
tions, such as the sale of streaming services (e.g., movies and music) and digital
products (e.g., software). Basically, the pricing problem is characterized by a
price, defined as the sum of the cost of the good for the seller and the gross
margin chosen by the seller, and a conversion rate, measuring the probability
that the good will be sold at a given price, which may be unknown to the seller.
Furthermore, in a pricing problem, the behavior of the customers may be nonsta-
tionary, thus making the average conversion rate to change over time. Usually,
there is a sequence of phases such that during each one of them the behavior is
stationary (in this case, the change between two consecutive phases may be due
to, e.g., a new product entering the market). Extremely low conversion rates
(as customary in e-commerce) make the estimation process excessively long,
usually longer than the time between two consecutive phases. As a result, the
estimation process rarely converges to stable solutions, and it is in a transient
for most of the time.1 Therefore, the effectiveness of a pricing algorithm mainly
depends on its performance during the transient, and this makes the problem
of finding the best price an online learning problem.

In an online learning problem, a learner chooses at each round an option,
customarily called arm (in our case, corresponding to a gross margin), and
observes the stochastic reward associated with the arm. The goal of the learner
is to identify the best arm in terms of expected reward while minimizing the
loss incurred from pulling sub-optimal arms. The two main opposite settings are
the bandit setting—a.k.a. Multi-Armed Bandit (MAB) [2]—, in which at each
round the learner observes the reward associated with only the pulled arm,
and the expert setting [3], where at each round the learner observes the reward
associated with all the arms. The bandit and expert settings are well assessed
in the scientific literature, while the study of all the situations lying between
these two extremes represents a widely unexplored research area, whose goal
is the exploitation of the problem structure to improve the performance of the
traditional bandit algorithms.

The main work dealing with bandits for pricing is provided in [1], where
the authors study the value of knowing the demand curve—assumed continuous
and smooth—in stationary settings both in the stochastic and in the adversar-
ial cases and provide a tight regret-bound analysis. Furthermore, the authors
provide an algorithm to select a finite set of arms to which each state-of-the-art
MAB algorithm can be applied. In this paper, we focus on a different prob-
lem. Specifically, we exploit the properties of the conversion rates in the pricing
problem to design algorithms capable of improving the empirical performance
of the state-of-the-art MAB algorithms both in stationary and nonstationary
stochastic settings. Thus, in principle, our algorithms can be paired with the
work provided in [1]. Empirically, our algorithms significantly outperform the

1As customary, with “transient” we mean the early stages of the learning process that are
far from the convergence.
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techniques available in the state of the art. This is achieved without incurring
any cost in terms of theoretical guarantees. Indeed, our algorithms present the
same asymptotic regret bounds of the algorithms for pricing previously known.
The specific properties we exploit in our paper, unexplored in the literature so
far, are as follows.

The first property is the weak decreasing monotonicity of the customer’s de-
mand curve in the price. That is, the larger the price, the smaller the number of
customers that buy the good, or, equivalently, the larger the price, the smaller
the conversion probability. Monotonicity assumption is very common in eco-
nomics [4] and applies to a wide spectrum of settings. For instance, the demand
curves are monotonic in markets in which the goods/services are very similar,
and thus every competitor has a similar market share. Many Internet services
are characterized by a monotonic demand curve, e.g., for all those that provide
basic accounts for free and require to pay for premium features (a.k.a. freemium
services) [5]. The free basic account is crucial for attracting users to increase
the popularity of the service and, thus, to increase the value for a user in adopt-
ing the service. In this scenario a vast majority of the users are not willing to
pay the premium account at any price, while the remaining fraction of users
will consider to pay a fee to be able to access the extra services. Restricting
the analysis on these users, we have that the demand curve for the purchase
of the premium account is monotonically decreasing in the price. Notice that
monotonicity is common also in many other application domains different from
the pricing. For instance, in multi-slot online advertising, where it is necessary
to estimate the Click-Through Rates (CTRs) of ads [6] and the expected value
of the CTR of an ad monotonically decreases from the slot in the top to the one
in the bottom; and in bandwidth allocation, where it is necessary to estimate
the best packet size for the link between some servers [7] and, if a packet has
been successfully transmitted, also a smaller one would have been received too.

When monotonicity in the price holds, each time a buyer makes a purchase at
a given price, we can infer that the sale would have also been made at any lower
price, and, vice versa, each time the buyer refuses to buy at a certain price, we
can infer that all the higher prices would not have been accepted too. Providing
such information to the algorithms allows them to speed up the learning process.
We are also interested in the weak decreasing monotonicity of the demand curve
in the gross margin. When this property holds, our algorithms can be used to
maximize the profit. Instead, when the demand curve is monotonic in the price
but not in the gross margin, our algorithms can be used to maximize the revenue.

The second property concerns the fact that e-commerce sellers have a pri-
ori information about the customer behavior, coming from past transactions.
Usually, this information is not sufficient for producing sufficiently accurate esti-
mates to avoid a cold start of the learning algorithms, e.g., in the case the seller
pulled in the past a limited number of arms or the market is nonstationary and,
therefore, too old information is not meaningful. However, such information is
sufficient to estimate a lower bound to the percentage of the buyers that are
only interested in checking the price without buying the item, which leads to a
low probability of purchasing a good [8] (e.g., it is common that human users

3



check the price for some days before buying an item as well as it is common
that companies use bots to frequently check the prices of the competitors). As
a result, for every specific pricing setting (e.g., associated with a product) we
can set an upper bound over the curve of the conversion rate as a function of
the price (or the gross margin). This may allow exploiting tighter concentration
inequalities, thus reducing the experience needed to get accurate estimates of
the expected conversion rate, and, consequently, reducing the loss due to the
algorithm exploration.

1.1. Related Works

Several previous works exploit the structure of specific classes of sequential
games to improve the performance provided by the general-purpose algorithms.
For instance, in [9, 10] the authors present policies for MAB problems where the
expected reward is unimodal over partially ordered arms. However, the assump-
tion of unimodal reward is strong and rarely met in practice in microeconomics
problems. Interestingly, the assumptions of monotonicity and unimodality are
orthogonal, none of them being a special case of the other one and, therefore,
the results known for unimodal bandits cannot be directly adopted in monotonic
settings. A different approach is presented in [11, 12], where the authors study
a graph model for the arm feedback in an adversarial setting under the assump-
tion that the realizations are correlated and that this correlation is known. The
treatment of this last assumption is different from the treatment of the mono-
tonicity assumption, where, conversely, the correlation is over the expected value
of the arms and not over the realizations. In [13, 14], the authors propose a
more general setting named partial monitoring games, for which several studies
on asymptotic regret bounds have been produced in the last decade both in
stochastic [15, 16] and adversarial [7, 14, 17] settings. To the best of our knowl-
edge, no work takes advantage of the monotonicity property as defined above
or exploits a priori information about the magnitude order of low conversion
probabilities.

In the economics literature and, more precisely, in the subarea of learning
and earning, several works study the pricing problem [18, 19, 20, 21]. Most
of these works assume that a priori information on the structure of the prob-
lem is available (e.g., on the product supply availability or the user behavior).
More specifically, [18] considers a limited initial inventory of a single product
and designs a parametric and a non-parametric algorithm to estimate the de-
mand function. In [19], the authors design the LLVD algorithm, based on the
Bayesian framework, which assumes that the demand curve linearly decreases
with the price. Several works propose techniques to learn the optimal price
under the assumption that the expected revenue curve has a unique global op-
timal solution [20, 21, 22]. Finally, in [23] the authors consider the case of an
adversarial model for the user in an online posted-price auction and directly ap-
plies the Exp3 algorithm [24] to minimize the regret. Remarkably, most of the
works in the learning and earning field do not provide any theoretical guarantee
on the regret bounds. Even if heuristic algorithms might perform better than
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the algorithms with theoretical guarantees, the lack of worst-case guarantees
discourages their employment in practice.

A problem related to pricing is the design of nearly-optimal auctions in the
case the bidders’ valuations are drawn from an unknown distribution [25, 26].
The proposed solution relies on statistical learning theory techniques to compute
the number of samples required to bound the distance of the approximated
solution from the real expected revenue.

The related works discussed above focus on stationary settings. The MAB
literature also provides several works addressing nonstationary settings. In [27,
28], the authors study an abruptly changing environment and propose the SW-
UCB algorithm, that exploits a sliding window approach. In economic domains,
an abrupt change can be due to the invasion of the market by a new product.
Instead, in [9, 10], the authors present policies working in a unimodal and
smoothly changing environment. Finally, [29] presents an evolutionary algo-
rithm for a nonstationary setting. The proposed algorithm outperforms the
state-of-the-art ones, but no theoretical guarantees on the regret are provided.

1.2. Original Contributions

In the present paper, we study the stochastic MAB setting on a finite num-
ber of arms, and we propose techniques to exploit the monotonicity property
of conversion rates as well as the a priori information on the maximum con-
version rate. Our techniques can be paired, in principle, with any frequentist
MAB algorithm, while the extension to Bayesian MAB policies (e.g., Thompson
Sampling [30]) is left open. In this paper, we tailor our techniques for two main
Upper Confidence Bound (UCB) like algorithms working in stationary settings:
UCB1 [31], being the most popular and basic MAB algorithm, and UCBV [32],
being one of the UCB-like algorithms with the best empiric performance. We
prove that the asymptotic regret bounds of our algorithms are of the same
order as UCB1 and UCBV. Furthermore, we provide an analysis for nonstation-
ary settings, tailoring our techniques for SW-UCB and providing a regret bound
analysis for the modified algorithm. We present a thorough experimental eval-
uation of our algorithms in several different configurations based on real-world
data. We compare our algorithms with the main general-purpose frequentist
stochastic MAB policies both in stationary and nonstationary settings, showing
that exploiting the two aforementioned properties allows one to significantly
improve the profit—up to 300%. Overall, the empirical analysis shows that our
algorithms provide significant advantages with respect to general-purpose MAB
algorithms in the early stages of the learning process. This is crucial in real
pricing scenarios, where very low conversion rates (that require a long explo-
ration phase to have accurate estimations) and nonstationary buyers’ demands
make the algorithms to work in a never-ending transient.

1.3. Paper Organization

The remaining part of the paper is structured as follows. Section 2 provides
the formulation for the MAB setting we study. Section 3 describes the pro-
posed techniques in stationary settings, while Section 4 describes the proposed
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techniques in nonstationary settings. Section 5 provides experimental results in
stationary settings, while Section 6 provides experimental results in nonstation-
ary settings. Finally, in Section 7 the conclusions of this work are drawn. In
the appendices, we provide supplemental material. More precisely, the proofs of
the theorems are reported in Appendix A, the pseudocode of some algorithms
can be found in Appendix B, and additional experimental results are provided
in Appendix C.

2. Problem Formulation

We study a scenario where an unlimited non-perishable amount of goods is
available to a monopolistic seller, who proposes the product she is selling to some
unknown buyers at a chosen price. For the sake of simplicity, we assume the
costs of the seller to be a constant equal to zero, and therefore the gross margin
and the price are equal.2 We model our problem as a MAB problem [31], where
at each round t ∈ {1, . . . , N} over a finite horizon N the seller selects an arm,
corresponding to a gross margin, among a strictly ordered finite set ofK different
arms A = {a1, . . . , aK} with ai ∈ (0,+∞). As customary in microeconomics,
each buyer is modeled as a deterministic agent who buys the item only if the
proposed gross margin is lower than or equal to a threshold s ∈ R+. Thus, all
the gross margins that are at most s lead to a sale, while all the ones that are
higher than s lead to a non-sale. Since buyers generally have different thresholds
s, we model s as realizations of a random variable S with a probability density
function (pdf) S over the finite support Ω ⊂ R+. In stationary settings, the pdf
S is unique for all the rounds, whereas in nonstationary settings each round t
presents a potentially different pdf St. We assume that the pdfs are unknown to
the seller and therefore that the seller needs to estimate them. The gross margin
ai also represents the reward received by the seller once she sold the product.
Thus, the seller aims at maximizing of the total expected profit over the time
horizon N . A MAB policy is an algorithm U(ht) that chooses the next arm ait
to play at round t given history ht, defined as the sequence of past plays and
obtained rewards. At each round t the algorithm observes a single realization
of the reward Vit obtained from the arm ait = U(ht).

2.1. Stationary Pricing Model

In the case of stationary settings, the reward gained by pulling an arm ai
is a bounded random variable Vi = aiXi, where Xi ∼ Be(µi) is a Bernoulli
variable that represents the outcome (buy/not buy) of the transaction, where
µi := E[Xi] is the expected value of the outcome corresponding to arm ai, i.e.,

2Our algorithms can be used to maximize the profit whenever the costs are known and
the demand curve is weakly monotonically decreasing in the gross margin. In this case, the
problem of finding the best price can be formulated as the problem of finding the best gross
margin. If the demand curve is not monotonic in the gross margin or the costs are not known,
our algorithms can be used to maximize the revenue. In this case, our algorithms control
directly the price and not the gross margin.
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the conversion rate. We denote with Vi,n and Xi,n the random variable of the
reward and the outcome of the n-th pull of the i-th arm, respectively, and with
vi,n and xi,n their realizations. We denote with Ti(t) =

∑t
m=1 1{U(hm) = ai}

the number of times the arm ai was pulled in the first t rounds, where 1{B} is the
indicator function of the event B. The objective of a policy is the maximization
of the expected cumulative reward or, equivalently, the minimization of the loss
with respect to the optimal decision (in terms of reward). This loss is usually
addressed as (cumulative) pseudo-regret, whose definition over the time horizon
N is:

RN = ai∗µi∗N −
K∑
i=1

aiµiE[Ti(N)],

where i∗ = arg maxi∈{1,...,K} aiµi is the optimal arm and E[·] is the expectation
with respect to the stochastic components of the policy.

2.2. Nonstationary Pricing Model

In the case of nonstationary settings, we analyse an abruptly changing envi-
ronment, similarly to what has been studied in [27], where the pdf Sj describing
the buyer behavior is constant during sequences of rounds called phases and
changes at unknown rounds called breakpoints. Thus, differently from the sta-
tionary scenario, the expected value of the outcome µi,t of an arm ai at round
t changes over the phases and therefore the best arm ai∗,t might change after
each breakpoint.

A breakpoint b ∈ {1, . . . , N} is a round such that ∃i | µi,b−1 6= µi,b, i.e., a
round b where the expected reward of at least one arm changed with respect to
the one at round b − 1. In a nonstationary environment S(B) with time hori-
zon N we have a set of breakpoints B = {b1, . . . , bΥN } of cardinality ΥN (for
sake of notation we define b1 = 1), which determines a set of phases {Φφ}ΥNφ=1,
where Φφ = {t|bφ−1 ≤ t < bφ}, i.e., the set of rounds between two consecutive
breakpoints. During phase Φφ, we denote (with abuse of notation) with µi,φ
the expected value of the outcome of the i-th arm ai and with µi∗,φ the ex-
pected conversion probability corresponding to the best arm ai∗,φ. By defining
Nφ = |Φφ|, the cumulative pseudo-regret of a generic policy over a nonstationary
environment is:

RN = E
[
N∑
t=1

(ai∗,tµi∗,t − aitµit,t)
]

=
ΥN∑
φ=1

ai∗,φµi∗,φNφ − E
[∑N

t=1 aitµit,t

]
=

ΥN∑
φ=1

(
ai∗,φµi∗,φNφ − E

[∑
t∈Φφ

aitµit,t

])
=

ΥN∑
φ=1

(
ai∗,φµi∗,φNφ −

∑K
i=1 aiµi,φE[Ti(Φφ)]

)
,

where
∑ΥN
φ=1Nφ = N , Ti(Φφ) =

∑
m∈Φφ

1 {U(hm) = ai} is the number of times

the i-th arm ai has been pulled during phase Φφ and E[·] is the expectation with
respect to the stochastic components of the policy.
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2.3. Properties of the Pricing Problem

We exploit two properties of the probability distributions of the random
variables Xi,n representing the outcomes of the transactions. The first prop-
erty is the dependency between arms. While in the classic MAB setting the
rewards produced by different arms are assumed to be drawn from indepen-
dent probability distributions, in our setting this does not hold anymore, since
the realizations at time t (i.e., x1,T1(t), . . . , xK,TK(t)) of the outcome variables
X1,T1(t), . . . , XK,TK(t) are correlated by the threshold of the buyer that plays at
round t. The expected conversion probability µi,φ corresponding to gross margin
ai at phase Φφ is defined as the probability that a user purchases the product
or formally:

µi,φ := PSφ(s ≥ ai) = 1−
∫ ai

0

Sφ(x)dx.

Notice that, in stationary settings, we have a single probability distribution, thus
Sφ = S and µi,φ = µi. From the non-negativity of the probability distribution
function Sφ and from the properties of the integral, it clearly follows that ai <
aj ⇒ µi,φ ≥ µj,φ, i.e., the expected conversion probability is monotonically
(weakly) decreasing with respect to the gross margin.

The second property concerns the low conversion rates, which are common in
many e-commerce applications. In this case, the seller knows that only a certain
percentage of the buyers µmax ∈ [0, 1] (typically µmax � 1) really considers the
possibility of purchasing the good, while the remaining part 1 − µmax would
not buy at any price. Such behavior can be introduced in the user model by
considering Sφ with pdf equal to Sφ(x) = (1−µmax) · δ(0) +µmax · Cφ(x), x ∈ Ω,
where δ(0) is a Dirac delta probability distribution centered in 0 and Cφ(·) is a
pdf defined over Ω.

3. Exploiting Pricing Property in Stationary Settings

In this section, we describe techniques exploiting the pricing problem struc-
ture in stationary settings. We use the monotonicity structure of the expected
value of the outcome {µi}Ki=1 of the arms to tighten the UCBs used in the fre-
quentist approach. The proposed techniques are then applied to UCB1 [31] and
UCBV [32], as interesting case studies. Furthermore, to exploit the prior knowl-
edge about low conversion rates, we propose the use of a form of the Chernoff’s
bound [33] which, in this case, is tighter than the Hoeffding’s one. Finally, we
provide an algorithm that combines both techniques.

3.1. Exploiting the Monotonicity Property

Given an arm ai, the realizations of all the outcomes Xj with j < i provide
information that can be exploited for the computation of the UCB on the ex-
pected value µi. Indeed, since µi ≤ µj , we can use the realizations drawn so far
from Xj as optimistic samples to estimate µi. In what follows, we will derive
a set of bounds which exploit the samples coming from arms with lower values
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and consider the tightest among them to design an algorithm for the pricing sce-
nario. Let Xi,t be the empirical mean, at round t, of the outcomes obtained by
pulling arm ai for Ti(t−1) rounds (i.e., an estimator of the expected conversion
rate µi of arm ai) and xi,t its realization, or formally:

Xi,t :=
1

Ti(t− 1)

Ti(t−1)∑
n=1

Xi,n, xi,t :=
1

Ti(t− 1)

Ti(t−1)∑
n=1

xi,n.

Similarly, given 1 ≤ j ≤ i, let Xji,t be the following convex combination of the
sample means Xj,t, . . . , Xi,t and let xji,t be its realization:

Xji,t :=

∑i
k=j Tk(t− 1)Xk,Tk(t−1)

Tji(t− 1)
, xji,t :=

∑i
k=j Tk(t− 1)xk,t

Tji(t− 1)
,

where Tji(t− 1) =
∑i
k=j Tk(t− 1), corresponding to the cumulative number of

rounds all the arms from j to i have been pulled. Since, given the monotonicity
property, it holds:

µji,t = E
[
Xji,t

]
≥ µi,

any upper bound on µji,t is also an upper bound on µi. This allows us to
bound the expected value µi of the outcome Xi of arm ai by using samples
drawn from the set of outcomes {X1, . . . , Xi}. In other words, we can compute
an upper bound on the expected conversion rate associated with arm ai by
taking into account also the experience collected when lower arms were selected.
By considering concentration bounds over the aggregated variables Xji with
j ∈ {1, . . . , i}, we may find a tighter bound, which also holds for the expected
value of the outcome Xi. In what follows, we apply this idea to the concentration
bounds used in UBC1 and UCBV policies.

3.1.1. UCB1 with Monotonic Arms (UCB1-M)

Applying the Hoeffding’s inequality [34] to the random variables Xji,t, with
probability at least 1 − p

i where p ∈ [0, 1], we have the following UCBs (from
now on denoted as UCB1-M):

u
(UCB1-M)
ji,t = xij,t +

√
log(i)− log(p)

2Tji(t− 1)
> µji,t ≥ µi ∀j ∈ {1, . . . , i}. (1)

Since, for each j ∈ {1, . . . , i}, u(UCB1-M)
ji,t is a valid upper bound on µi holding

with at least probability 1 − p
i , by setting u

(UCB1-M)
i,t = minj∈{1,...,i} u

(UCB1-M)
ji,t

and resorting to a union bound, we have the tightest bound among those pro-
vided by Equation (1), holding with at least probability 1− p.

The use of the UCB1-M bound constitutes a potential improvement over
the traditional one used by the UCB1 algorithm and obtained by consider-
ing realizations coming from a single arm. Indeed, this novel UCB exploits
Tji(t − 1) ≥ Ti(t − 1) samples and may be tighter than the UCB1 one. If the
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observed empirical means are consistent with the monotonicity property (i.e.,
xi,t < xj,t, ∀i > j) the use of a larger number of samples coming from other
arms may allow one (specially in the early stages) to tighten the bound. The
proposed method is even more advantageous when empirical means are not con-
sistent with the monotonicity property (i.e., ∃ i > j such that xi,t > xj,t). In

this case, the bound u
(UCB1-M)
i,t is significantly improved over the original UCB1

bound. Such a situation is exemplified in Figure 1, where we have that, in
contrast with the monotonicity over A = {a1, a2}, the empirical mean of the
outcome corresponding to arm a1 = 1, i.e., x1,t, is lower than the one of arm
a2 = 2, i.e., x2,t. This happens because arm a2 has been selected much less often
than arm a1 and so its empirical mean is more uncertain. The samples drawn
from arm a1 allow to tighten the UCB for arm a2 from the value denoted by the
blue circle to the value denoted by the red square in Figure 1 (top). The use
of the proposed UCB for arm a2 does not imply a reduction in the confidence
level since the two values have been obtained from different bounds. Indeed,
they share the same confidence level 1− p, as shown in Figure 1 (bottom).

a1 = 1 a2 = 2
0.2

0.4

0.6

0.8 Conversion
UCB1
UCB1-M

0 0.2 0.4 0.6 0.8 1
10−50

p

1

X̂2X̂12P

u
(UCB1)
2,t

u
(UCB1-M)
2,t

Figure 1: Example of empirical means not consistent with the monotonicity property and
UCBs corresponding to UCB1 and UCB1-M. The top figure presents the real conversion
rate function (green line) and two bars going from the estimated expected reward and the
two bounds (blue and red lines). The bottom figure represents the dependence of the two
bounds over arm a2 (blue and red lines) with respect to the confidence level one wants to keep
[1 10−50]; p is the confidence level used to draw the top figure and the dashed lines are the
empirical means of X2 and X12.
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ALGORITHM 1: UCB1-M
Initialization
for t ∈ {1, . . . ,K} do

Play arm at and observe xt,1
Loop
for t ∈ {K + 1, . . . , N} do

for i ∈ {1, . . . ,K} do
Compute:

u
(UCB1-M)
i,t = min

j∈{1,...,i}

{
xji,t +

√
4 log(t) + log(i)

2Tji(t− 1)

}

Play arm ait such that it = arg max
i∈{1,...,K}

aiu
(UCB1-M)
i,t and observe xit,Tit (t)

The algorithm corresponding to the previously derived UCB, namely UCB1
with Monotonic arms (UCB1-M), is presented in Algorithm 1. At first, the
algorithm selects each arm once, to have at least one outcome realization coming
from each arm. Subsequently, for each round t, it assigns for each arm ai:

u
(UCB1-M)
i,t = min

j∈{1,...,i}

{
xji,t +

√
4 log(t) + log(i)

2Tji(t− 1)

}
,

where, we considered p = t−4 and we selected the j ∈ {1, . . . , i} minimizing

u
(UCB1-M)
ji,t . Finally, the algorithm selects for the next round t the arm ait

providing the maximum upper bound aitu
(UCB1-M)
it,t

over the expected reward
aiµi.

By using the UCB1-M algorithm we are able to show that:

Theorem 1. If policy UCB1-M is run over a stationary MAB setting with a
monotonic set A, the expected regret after N rounds is at most:

RN ≤
∑

i|ai 6=ai∗

8a2
i log(N)

∆i
+

∑
i|ai 6=ai∗

2a2
i log(K)

∆i
+

(
1 +

π2

3

) K∑
i=1

∆i,

where ∆i := ai∗µi∗ − aiµi,∀i ∈ {1, . . . ,K}.

The previous theorem guarantees that the proposed algorithm has, in the
worst case, O(log(N)) regret, as the UCB1 policy. Nevertheless, we show that,
empirically, UCB1-M dramatically outperforms UCB1.

3.1.2. UCBV with Monotonic Arms (UCBV-M)

Similarly, by resorting to the bound presented Theorem 1 in [32], it is possible
to derive an UCB that also considers the empirical variance V ji,t of the variable

11



Xji,t by using its realization vji,t, formally defined as:

V ji,t =

∑i
k=j

∑Tk(t−1)
n=1

(
Xk,n −Xji,t

)2
Tji(t− 1)

,

vji,t =

∑i
k=j

∑Tk(t−1)
n=1 (xk,n − xji,t)2

Tji(t− 1)
,

respectively. The bound, from now on denoted as UCBV-M, holding with prob-

ability at least 1− 3
(
p
i

)ξ
, with p ∈ [0, 1] is:

u
(UCBV-M)
ji,t = xji,t +

√
2vji,tξ[log(i)− log(p)]

Tji(t− 1)
+

3cξ[log(i)− log(p)]

Tji(t− 1)
> µji,t,

where ξ, c ∈ R, ξ > 1, c ≥ 1; see [32] for details. Note that, if we choose

ξ > 1 − log(3)
log(p) , the previous bound holds with probability at least 1 − p

i , i.e.,

with the same confidence the UCB1-M holds.
The algorithm, based on the bound derived above and called UCBV with

Monotonic arms (UCBV-M), is described in Algorithm 2. Similarly to UCB1-
M, it chooses each arm once in the initial phase and, after that, it selects the

next arm to play on the basis of the upper confidence bounds u
(UCBV-M)
i,t =

u
(UCBV-M)

j̄i,t
, where j̄ is chosen to minimize u

(UCBV-M)
i,t and p = t−1. It is possible

to show that:

Theorem 2. If policy UCBV-M is run with ξ = 1.2 and c = 1 over a setting
with a monotonic set A, the expected regret after N rounds is at most:

RN ≤
12

5

∑
i|ai 6=ai∗

a2
i

(
σ2
i

∆i
+

32

15

)
log(N)+

∑
i|ai 6=ai∗

∆i

[
1 + a2

i

(
σ2
i

∆2
i

+
2

∆i

)
log(K)

]
,

where σ2
i := V ar(Xi,n), ∀i ∈ {1, . . . ,K},∀ n ∈ {1, . . . , Ti(N)}.

Even in this theorem the asymptotic behaviour is of order of O(log(N)) as
the one presented in [32] for the UCBV algorithm.

12



ALGORITHM 2: UCBV-M
Initialization
Input: ξ, c
for t ∈ {1, . . . ,K} do

Play arm at and observe xt,1
Loop
for t ∈ {K + 1, . . . , N} do

for i ∈ {1, . . . ,K} do
Compute:

u
(UCBV-M)
i,t = min

j∈{1,...,i}

{
xji,t +

√
2vji,t[ζ log(t) + log(i)]

Tji(t− 1)

+
3c[ζ log(t) + log(i)]

Tji(t− 1)

}

Play arm ait such that it = arg max
i∈{1,...,K}

aiu
(UCBV-M)
ji,t and observe xit,Tit (t)

3.2. Exploiting the Low Conversion Rates Property

When it is a priori known that the conversion rates of all the arms are up-
per bounded by a value µmax ≤ 1

2 , i.e., µi ≤ µmax for every i ∈ {1, . . . ,K}, it
is possible to exploit probabilistic bounds that achieve better results than the
one based on the Hoeffding’s inequality [34]. More specifically, one of the ap-
proximations used in the derivation of the Hoeffding’s inequality for the generic
outcome Xi is:

P(Xi,t + ε ≤ µi) ≤ e−Ti(t−1)D(µi+ε||µi) ≤ e−2Ti(t−1)ε2 , (2)

whereD(µi+ε||µi) is the Kullback-Leibler (KL) divergence between two Bernoulli
variables with mean µi + ε and µi, respectively.

ε
0 0.2 0.4 0.6 0.8 1

y

0

0.2

0.4

0.6

0.8

1
HB(ε)
KL(ε), µmax = 0.01
CB(ε), µmax = 0.01
KL(ε), µmax = 0.001
CB(ε), µmax = 0.001

Figure 2: Example of bounds y = e−x(ε) obtained with different x(ε): Hoeffding’s Bound
(HB(ε)), Kullback-Leiber divergence (KL(ε)) and Chernoff’s Bound (CB(ε)).
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As shown in Figure 2, the bound based on the KL divergence (solid lines) and
the one on Hoeffding’s inequality (dash-dotted line) diverge as µmax decreases.
To reduce the gap, we consider the following result that is one of the formulations
of the Chernoff’s bound [33]:

Theorem 3 (Theorem 4 in [35], Lower tail). Given a set of Ti(t−1) inde-
pendent and identically distributed random variables {Xi,1, . . . , Xi,Ti(t−1)} such
that Xi,s ∼ Be(µi), for any ε > 0 we have:

P(Xi,t + ε ≤ µi) ≤ e−
Ti(t−1)ε2

2µi .

Since µi is unknown, the above concentration inequality cannot be used in
practice. On the other hand, under the assumption that µi ≤ µmax, we can
replace µi with µmax, thus getting an upper confidence bound that is tighter
than the Hoeffding’s one and gets close to the one obtained by knowing the KL
divergence (see dashed lines in Figure 2). To obtain an upper confidence bound
over µi with confidence 1− p, with p ∈ [0, 1], we resort to Theorem 3 and get:

P(Xi,t + ε ≤ µi) ≤ e−
Ti(t−1)ε2

2µi ≤ e−
Ti(t−1)ε2

2µmax = p, (3)

where the last inequality derives from the trivial fact that µmax ≥ µi for every
i ∈ {1, . . . ,K}. Thus, with probability at least 1 − p we have the following
UCBs (from now on denoted as UCB-L):

u
(UCB-L)
i,t := xi,t +

√
−2µmax log (p)

Ti(t− 1)
≥ µi, (4)

where the square root term is computed by considering the positive root of the
second order equality in Equation (3). By comparing the two bounds provided
by Hoeffding’s and Chernoff’s inequalities, it is possible to compute a sufficient
condition that identifies when the former is tighter than the latter: when µmax >
1
2 the bound in Equation (3) is larger than the one in the right hand side
of Equation (2). As a consequence, if we cannot guarantee low conversion
probabilities, it is better to resort to the traditional Hoeffding’s bound.

ALGORITHM 3: UCB-L
Initialization
Input: µmax

for t ∈ {1, . . . ,K} do
Play arm at and observe xt,1

Loop
for t ∈ {K + 1, . . . , N} do

for i ∈ {1, . . . ,K} do
Compute:

u
(UCB-L)
i,t = xi,t +

√
8µmax log(t)

Ti(t− 1)

Play arm ait such that it = arg max
i∈{1,...,K}

aiu
(UCB-L)
i,t and observe xit,Tit (t)
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The proposed algorithm, namely Upper Confidence Bound with Low conver-
sion rates (UCB-L) is presented in Algorithm 3, where we set p = t−4 and we
choose the next arm to be pulled by selecting the one having the maximum
expected revenue. The execution is analogous to the one already described for
UCB1-M and UCBV-M, where we have an initial round robin over all the arms
and, after that, the choice of the arm to be played in the next round is based

on the upper bound of the regret aiu
(UCB-L)
i,t .

In this case it is possible to show that:

Theorem 4. If policy UCB-L is run over a stationary MAB setting with a set
of arms A in which each arm ai ∈ A has outcome Xi,t such that E[Xi,t] = µi ≤
µmax ≤ 1

2 for each t ∈ {1, . . . , N}, the expected regret after N rounds is at most:

RN ≤
∑

i|ai 6=ai∗

32µmaxa
2
i log(N)

∆i
+

[
1 +

π2

6
+ ζ

(
10

7

)] K∑
i=1

∆i,

where ζ(·) is the Riemann zeta function.

Even by resorting by this newly designed bound the asymptotic order is
O(log(N)), thus we are assured to lose only a logarithmic amount of reward in
the learning process.

3.3. Exploiting both Properties

Here, we show how to combine both the monotonic and the low conver-
sion rates properties into a single algorithm. The resulting algorithm, named
UCB-LM, consists of computing for each arm ai the minimum upper confidence
bound among the ones built using Xji,t, with j ∈ {1, . . . , i}, but, differently
from UCB1-M, the UCBs are built exploiting the Chernoff’s inequality and the
assumption over the maximum conversion rate as it happens in UCB-L.

ALGORITHM 4: UCB-LM
Initialization
Input: µmax

for t ∈ {1, . . . ,K} do
Play arm at and observe xt,1

Loop
for t ∈ {K + 1, . . . , N} do

for i ∈ {1, . . . ,K} do
Compute:

u
(UCB-LM)
i,t = min

j∈{1,...,i}

{
xji,t +

√
2µmax[4 log(t) + log(i)]

Tji(t− 1)

}

Play arm ait such that it = arg maxi∈{1,...,K} aiu
(UCB-LM)
i,t and observe

xit,Tit (t)
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The resulting algorithm (in which we choose p = t−4) is summarized in
Algorithm 4. Also in this case, we can state the following result:

Theorem 5. If policy UCB-LM is run over a stationary MAB setting with a
monotonic set A in which each arm ai ∈ A has outcome Xi,t such that E[Xi,t] =
µi ≤ µmax ≤ 1

2 for each t, the expected regret after N rounds is at most:

RN ≤
∑

i|ai 6=ai∗

32µmaxa
2
i log(N)

∆i
+

∑
i|ai 6=ai∗

8µmaxa
2
i log(K)

∆i

+

[
1 +

π2

6
+ ζ

(
10

7

)] K∑
i=1

∆i,

where ζ(·) is the Riemann zeta function.

This bound presents the same characteristics of the one derived for UCB-L,
e.g., O(log(N)) regret and constant dependent from µmax. The experimental
results, presented in Section 5, provide empirical evidence that the introduction
of the monotonicity assumption is improving the performance of UCB-LM even
when we use the Chernoff bound to design MAB policies.

4. Exploiting the Monotonicity Property in Nonstationary Environ-
ment

Since in a nonstationary environment S(B) the outcome expected values
µi,φ might change as a new phase starts, we employ, similarly to [27], a Sliding
Window (SW) approach for UCB-like algorithms. This approach takes decisions
relying on what happened during the last τ rounds and, therefore, is capable
of forgetting information coming from previous phases. At the same time, we
integrate the information coming from the monotonicity property to speed up
the learning process. The choice of the SW length τ for such a setting is out of
the scope of this paper (more information can be found in [27]).

In what follows, we use the estimator for the outcome average value µi over
the last min{τ, t} rounds Xi,t,τ and its realization xi,t,τ , which are defined as:

Xi,t,τ :=
1

Ti(t− 1, τ)

Ti(t−1)∑
s=Ti(max{t−τ,1})

Xi,s,

xi,Ti(t−1,τ),τ :=
1

Ti(t− 1, τ)

Ti(t−1)∑
s=Ti(max{t−τ,1})

xi,s,

where Ti(t, τ) = Ti(t)− Ti(max{t− τ + 1, 1}) is the number of rounds the arm
ai has been selected in the last min{τ, t} ones. Similarly to what has been
considered for the UCB1-M algorithm, for each 1 ≤ j ≤ i, let Xji,t,τ be the
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following linear combination of the random variables Xj , . . . , Xi and xji,t,τ its
realization, defined as:

Xji,t,τ :=

∑i
k=j Tk(t− 1, τ)Xk,t,τ

Tji(t− 1, τ)
,

xji,t,τ :=

∑i
k=j Tk(t− 1, τ)xk,t,τ

Tji(t− 1, τ)
,

where Tji(t, τ) =
∑i
k=j Tk(t, τ) is the number of rounds one of the arms in

{aj , . . . , ai} has been selected in the last min{τ, t} ones. Given the monotonicity
property and assuming to have samples to compute xji,t,τ coming from the same
phase Φφ we have:

µji,φ = E
[
Xji,t,τ

]
≥ µi,φ.

Consider the following:

Theorem 6 (Corollary 21 in [27]). Given a sequence {X1, . . . , Xt} of t ∈ N
random variables with support Ω ⊆ [0, 1] with expectation µh := E[Xh] and a
sequence {ε1, . . . , εt} a previsible sequence of Bernoulli random variables. For
all τ ∈ N and η > 0 it holds:

P

(∑t
h=min{t−τ+1,1}(Xh − µh)εh∑t

h=min{t−τ+1,1} εh

)
≤
⌈

log(min{t, τ})
log(1 + η)

⌉
exp

{
−2δ2

(
1− η2

16

)}
.

If we apply the previous result to the random variable Xji,t,τ and η =

4
√

1− 2
ξ , with probability at least 1− p

i , with p ∈ [0, 1], we have the following

UCBs (from now on denoted as SW-UCB-M):

u
(SW-UCB-M)
ji,t = xji,t,τ +

√
ξ[log(i)− log(p)]

Tji(t− 1, τ)
> µji,φ ≥ µi,φ, (5)

where ξ ∈ R+ is a parameter used in the bound in [27].3 Even in this case, we

select u
(SW-UCB-M)
i,t as the tightest bound for 1 ≤ j ≤ i, which holds with at

least probability 1− p, to decide which arm to pull next.

3Here we assume that all the variables used to obtain Xji,t,τ are coming from a single
phase Φφ.
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ALGORITHM 5: SW-UCB-M
Initialization
for t ∈ {1, . . . ,K} do

Play arm ai and observe xt,1
Loop
for t ∈ {K + 1, . . . , N} do
for i ∈ {1, . . . ,K} do

Compute:

u
(SW-UCB-M)
i,t = min

j∈{1,...,i}

{
xji,t,τ +

√
ξ (4 log(min{t, τ}) + log(i))

Tji(t− 1, τ)

}

Play arm ait such that it = arg maxi∈{1,...,K} aiu
(SW-UCB-M)
i,t and observe

xit,Tit (t)

The pseudocode of the algorithm employing the aforementioned a bound
with p = (min{t, τ})−4

is presented in Algorithm 5 and presents characteristics
similar to the bounds we propose in the previous section. Focusing on the
SW-UCB-M algorithm, we can show that:

Theorem 7. If policy SW-UCB-M is run over a nonstationary MAB setting
S(B), for any τ ∈ N and ξ > 1

2 , the expected regret after N rounds is at most:

RN ≤
K∑
i=1

N
τ

4a2
i ξ[log(i) + log(τ)]

∆i
+ aiΥNτ +

2N

τ

 log(τ)

log
(

1 + 4
√

1− 1
2ξ

)

 ,

where ΥN is the number of breakpoints before N and

∆i := min
φ∈{1,...,ΥN}

(
ai∗φµi∗φ,φ − aiµi,φ

)
1{i 6= i∗φ} ∀i ∈ {1, . . . ,K},

denotes the minimum, over all the phases Φφ in which the arm ai is not optimal,
of the difference of the expected reward ai∗φµi∗φ,φ of the best arm ai∗φ and the
expected reward aiµi,φ of the arm ai.

5. Experimental Analysis in Stationary Environments

We provide a thorough experimental evaluation of our algorithms in station-
ary environments, comparing them with the corresponding algorithms that do
not exploit the two properties of the pricing problem we study.

5.1. Experimental Setting and Performance Indices

We evaluate our algorithms on a wide spectrum of configurations of pric-
ing settings characterized by a different number of arms in A, by different
pdfs S, and by a different µmax. In particular, we use a number of arms
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K ∈ {5, 9, 17, 33} evenly spaced over the interval [1, 17], whose values can be
interpreted as euros. We use a minimum of 5 arms, since a smaller number
would provide an excessively coarse discretization of the demand curve, leading
to an important loss in terms of profit. Furthermore, we use 9, 17, 33 arms such
that we iteratively halve the distance between each couple of consecutive arms,
thus making the discretization more accurate.

In order to use a realistic experimental setting, we estimate the demand
curves by gathering historical data coming from past transactions of an Euro-
pean Online Travel Agency. These curves are monotonically decreasing with
respect to the gross margin. More precisely, we estimate the conversion prob-
abilities corresponding to the applied gross margins and we fit the (1−)CDF
of a Gaussian distribution (minimizing the mean squared error). The Gaussian
distribution provides a probability distribution over the acceptance threshold S
of the customers. In doing that, we only use the data related to the purchases
of tickets when the availability of the supply was sufficiently large and, thus,
it did not affect the customers’ behavior. We focus on two classes of probabil-
ity distributions, called SL and SH . In SH , the arm maximizing the profit is
among the arms with largest gross margins, and, in SL, the arm maximizing
the profit is among the arms with smallest gross margins. Configurations SL
and SH represent the two extreme and most significant cases for the class of
algorithms that make the assumption of optimism against uncertainty. More
precisely, SH is an easy configuration independently from the number of the
arms we choose for discretization since any algorithm based on the assumption
of optimism against uncertainty can discard most of the arm with a few pulls
and, therefore, identify the best arm with a little exploration cost. Instead, SL
is a challenging configuration, since the identification of the best arm requires
a large exploration cost.

For each class SL and SH , we generate 5 probability distributions distin-
guishing for µmax. We use the values of µmax in {1, 10−1, 10−2, 10−3, 10−4},
corresponding, in the case of the reselling of flight tickets, to different routes
and markets. Let us observe that such a range includes the values of µmax

of many scenarios different from the one we study, allowing us to provide an
experimental evaluation of our algorithms also in other scenarios. More pre-
cisely, according to [36], µmax = 10−1 corresponds to Bing, Google, Yahoo!;
µmax = 10−2 corresponds to Facebook, Pinterest, Twitter; µmax = 10−3 corre-
sponds to LinkedIn; µmax = 10−4 corresponds to StumbleUpon.

Summarily, the threshold pdfs S are as follows:4

• SH ∼ N (20, 6), representing a situation where ai∗ ≥ 15, i.e., the optimal
gross margin is among the highest values in [1, 17] and for every i we have
µi ∈ [0.68µmax, µmax], and

• SL ∼ N (3, 5), representing a situation where ai∗ ≤ 5, i.e., the optimal

4Here, we denote with N (µ, σ) the normal distribution with mean µ and standard devia-
tion σ.
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gross margin is among the lowest values in [1, 17] and for every i we have
µi ∈ [0.0025µmax, 0.66µmax].

For each combination of (K,S, µmax), we average over 100 independent trials
of length N = 107 rounds and in each round the threshold s is independently
drawn from S.

We compare our algorithms UCB1-M, UCB-L, and UCB-LM with the cor-
responding frequentist algorithms that do not exploit the two properties of the
pricing problem we study: UCB1, UCBV, and UCBV-M (for the UCBV and
UCBV-M algorithms, the parameters we use are c = ξ = 1). In our evaluation,
we use the following performance indices, for each t ≤ N :

R%(t) = R̄t(U)
R̄t(UCB1)

∆P (t) =
∑t
t′=1 E

[
Vi(U,t′)

]
−∑t

t′=1 E
[
Vi(UCB1,t′)

]
∆P%(t) = ∆P (t)∑t

t′=1
E[Vi

(UCB1,t′) ]

where U is a generic policy, i(U,t) is the index chosen by policy U at time t.
R%(t) is defined as the ratio between the total regret of policy U after t rounds
and the regret of UCB1 that we use here as the baseline—a value of R% lower
than 1 means that U outperforms UCB1 and the lower the value the greater
the improvement—; ∆P (t) is the difference between the cumulative expected
reward of policy U and the one obtained with UCB1; ∆P% is defined as the
ratio between ∆P (t) and the cumulative expected reward obtained with UCB1.
A value of ∆P (and ∆P%) greater than 0 means that U improves the profit with
respect to UCB1 and the higher the value the greater the improvement.

5.2. Regret Analysis

The average R%(N) and the 95% confidence intervals are reported in Table 1
(the results of UCB-L and UCB-LM are omitted for µmax = 1, their bound being
theoretically worse than the one of UCB1). We omit the evaluation of R%(t)
for t < N , since we provide in the next section a detailed discussion about
how the profit provided by the algorithms changes as t changes, and we believe
this latter evaluation is more significant in practice than the evaluation of the
dependency of the regret on time.

We initially focus on the results obtained with SL. Here, UCBV-M out-
performs all the other algorithms, with R%(N) decreasing from 0.55 to 0.02
of the UCB1 regret. Furthermore, we observe that all the algorithms in the
table outperform UCB1. While UCB1-M performs better than UCB-L only in
some specific settings, UCB-LM outperforms both UCB1-M and UCB-L in all
the configurations. Furthermore, UCB-LM performs usually worse than UCBV,
except for very low values of µmax and many arms. These results strengthen
the evidence that the use of the Chernoff’s bound is effective when µmax � 1.
Instead, UCBV-M always outperforms UCBV reducing the regret of UCBV by
a ratio up to 2/3. We observe that the (relative) performance of the algorithms
exploiting the monotonicity increases as the number of arms increases. This is
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because these algorithms better exploit the correlation among the arms. Finally,
we observe that the best improvement (in terms of reduction of the regret) of
our algorithms with respect to the performance of UCB1 is for µmax = 10−1.
This is because when µmax = 1 all the algorithms converge to the best arm be-
fore N = 107 rounds, minimizing the differences in terms of regret among them;
when µmax ∈ {10−1, 10−2} our algorithms converge to the best arm before 107

rounds, while UCB1 does not, thus maximizing the differences in terms of re-
gret among the algorithms; when µmax ∈ {10−3, 10−4} no algorithm converges
to the best arm by 107 rounds, but some algorithms select the best arm more
frequently than others.
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Table 1: Results concerning R%(N) (averaged values over 100 runs, ± 95% confidence inter-
vals). The best results for each configuration are in boldface.

SL

µmax |A| UCB1-M UCBL UCB-LM UCBV UCBV-M

1

5 0.81± 0.01 —— —— 0.22± 0.00 0.20± 0.00

9 0.72± 0.01 —— —— 0.24± 0.00 0.19± 0.00

17 0.67± 0.01 —— —— 0.26± 0.00 0.20± 0.00

33 0.61± 0.01 —— —— 0.31± 0.01 0.23± 0.01

10−1

5 0.80± 0.00 0.42± 0.00 0.34± 0.00 0.03± 0.00 0.02± 0.00

9 0.66± 0.00 0.45± 0.00 0.30± 0.00 0.03± 0.00 0.03± 0.00

17 0.50± 0.00 0.50± 0.00 0.27± 0.00 0.05± 0.00 0.04± 0.00

33 0.32± 0.00 0.54± 0.00 0.20± 0.00 0.06± 0.00 0.04± 0.00

10−2

5 0.87± 0.00 0.30± 0.00 0.24± 0.00 0.02± 0.00 0.02± 0.00

9 0.78± 0.00 0.49± 0.00 0.31± 0.00 0.05± 0.00 0.04± 0.00

17 0.73± 0.00 0.65± 0.00 0.30± 0.00 0.11± 0.00 0.07± 0.00

33 0.70± 0.00 0.77± 0.00 0.28± 0.00 0.17± 0.00 0.08± 0.00

10−3

5 0.91± 0.00 0.83± 0.00 0.71± 0.00 0.17± 0.00 0.15± 0.00

9 0.88± 0.00 0.88± 0.00 0.64± 0.00 0.33± 0.00 0.22± 0.00

17 0.86± 0.00 0.92± 0.00 0.59± 0.00 0.47± 0.00 0.22± 0.00

33 0.85± 0.00 0.94± 0.00 0.58± 0.00 0.60± 0.00 0.22± 0.00

10−4

5 0.92± 0.00 0.96± 0.00 0.86± 0.00 0.67± 0.01 0.55± 0.01

9 0.89± 0.00 0.97± 0.00 0.81± 0.00 0.73± 0.00 0.50± 0.01

17 0.87± 0.00 0.98± 0.00 0.78± 0.00 0.77± 0.00 0.48± 0.01

33 0.86± 0.00 0.98± 0.00 0.77± 0.00 0.80± 0.00 0.48± 0.01

SH

µmax |A| UCB1-M UCBL UCB-LM UCBV UCBV-M

1

5 1.01± 0.02 —— —— 0.20± 0.01 0.21± 0.01

9 1.01± 0.03 —— —— 0.28± 0.01 0.31± 0.01

17 1.02± 0.02 —— —— 0.45± 0.02 0.50± 0.02

33 1.02± 0.01 —— —— 0.37± 0.01 0.42± 0.01

10−1

5 1.03± 0.02 0.60± 0.02 0.60± 0.02 0.23± 0.01 0.24± 0.01

9 0.98± 0.01 0.63± 0.01 0.63± 0.01 0.22± 0.01 0.23± 0.01

17 0.86± 0.01 0.65± 0.01 0.59± 0.01 0.31± 0.01 0.29± 0.01

33 0.67± 0.01 0.69± 0.01 0.54± 0.01 0.42± 0.01 0.36± 0.01

10−2

5 0.93± 0.00 0.30± 0.01 0.29± 0.01 0.21± 0.01 0.22± 0.01

9 0.85± 0.00 0.38± 0.01 0.35± 0.01 0.25± 0.01 0.25± 0.01

17 0.75± 0.00 0.37± 0.00 0.28± 0.00 0.29± 0.01 0.22± 0.01

33 0.67± 0.00 0.42± 0.00 0.25± 0.00 0.37± 0.00 0.21± 0.00

10−3

5 1.26± 0.00 0.31± 0.01 0.30± 0.01 0.33± 0.01 0.32± 0.01

9 1.28± 0.00 0.44± 0.01 0.36± 0.01 0.46± 0.01 0.37± 0.01

17 1.30± 0.00 0.49± 0.01 0.34± 0.01 0.58± 0.01 0.34± 0.01

33 1.30± 0.00 0.57± 0.00 0.35± 0.01 0.74± 0.01 0.35± 0.01

10−3

5 1.46± 0.00 0.55± 0.01 0.54± 0.01 0.89± 0.02 0.78± 0.02

9 1.51± 0.00 0.68± 0.01 0.63± 0.01 1.03± 0.01 0.83± 0.02

17 1.57± 0.00 0.74± 0.01 0.64± 0.01 1.20± 0.01 0.86± 0.02

33 1.59± 0.00 0.79± 0.01 0.66± 0.01 1.33± 0.01 0.86± 0.02
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Now, we focus on the results obtained with SH . Here, there is no algorithm
that always outperforms the others. We observe that, for large values of µmax,
UCBV is the best algorithm, for intermediate values, UCBV-M outperforms
the others, and for small values, UCB-LM is the best. The best algorithm
presents R%(N) in the range between 0.20 and 0.66. In details, UCB1 per-
forms better than UCB1-M for some cases and, surprisingly, better than UCBV
when µmax is very small. We observe that UCB-L, UCB-LM, and UCBV-M
always perform better than UCB1. In some configurations UCB-LM improves
over UCBV, halving the UCBV regret, e.g., in the configuration with K = 33
arms and µmax = 10−4, providing a significant improvement over UCBV perfor-
mance. Differently from the case with SL, with SH the relative improvement of
algorithms exploiting the monotonicity does not increase as the number of arms
increases. The same holds for the UCBV algorithm, which does not exploit any
assumption, suggesting that the performance of the UCB1 algorithm improves
as the number of arms increases in the SH setting. This is probably due to the
fact that UCB1 excludes many arms easily in the case the optimal values of the
expected reward are realized on high arms, e.g., if µiai > aj it will not play
arms lower or equal to aj . Thus, UCB1 is effectively working on a smaller set
of arms than A, and this leads to low regret even for this policy.

To summarize, our algorithms, specifically UCBV-M and UCB-LM, provide
a significant improvement in terms of regret with respect to the algorithms
available in the state of the art.

5.3. Profit Analysis

The average ∆P%(t) and ∆P (t) for t ∈ {1, . . . , 107} obtained with UCB-LM
and UCBV-M (with respect to the results obtained with UCB1 and 5 arms) are
reported in Figure 3 and Figure 4, respectively.5 More detailed results about
all the algorithms can be found in Appendix C.

Initially, we focus on the results obtained with µmax ∈ {1, 10−1} and SL.
The value of ∆P%(t) dramatically changes during the time horizon. It reaches
a maximum around t = 104 for µmax = 1 and t = 105 for µmax = 10−1 and
then it decreases approaching the value of zero at t = 107. The improvement
is significant, the maximum of ∆P%(t) being about 2.2 for UCBV-M (i.e., the
profit of UCB1 is more than tripled) and about 1.3 for UCB-LM (i.e., the profit
is more than doubled). In the case of SH , the value of ∆P%(t) initially reaches
a minimum and subsequently a maximum, and finally approaches zero as t goes
to 107. In this case, the improvement is less significant than the one we have
in the case of SL and ∆P%(t) is about 0.003 when µmax = 1 and 0.033 when
µmax = 10−1, meaning an improvement of 0.3% and 3.3% over the UCB1 profit,
respectively.

5Results for UCB-LM in the case µmax = 1 are not reported since this algorithm requires
µmax <

1
2

to be effective. Moreover, the results for ∆P (t) for SH are not reported since they
are less significant.
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Now we focus on the results obtained with µmax = 10−2 and SL. The
maximum of ∆P%(t) is reached in the range between t = 106 and t = 107

(that is, very close to the termination of the time horizon). The improvement
is very significant, ∆P%(t) achieving values larger than 3.3. The behavior for
SH is analogous with respect to the one with larger µmax. Here, we can observe
that the minimum is achieved for a larger t than in the setting with µmax ∈
{1, 10−1}. The maximum of ∆P%(t) is about 0.04. Finally, we focus on the
results obtained with µmax ∈ {10−3, 10−4} and SL. The ∆P%(t) trend suggests
that its maximum might be beyond 107 rounds. Nevertheless, the improvement
is very significant: ∆P%(t) is larger than 3 for µmax = 10−3 and almost 2 for
µmax = 10−4. As for smaller values of µmax, the improvements with SH are
less significant. Nevertheless, UCB-LM presents a maximum of ∆P%(t) that is
almost 0.08 even with µmax = 10−4.

Furthermore, we observe how the performance of the algorithms varies as the
number of arms varies in the two different pdfs. With SL the best improvement
is achieved when the number of arms is 33 with µmax ≤ 10−1 and 5 otherwise.
Instead, with SH , the best improvement is achieved, in the most cases, when
using 33 arms.

To summarize, our algorithms, specifically UCBV-M and UCB-LM, provide
a significant improvement in terms of relative profit especially in the early stages
of the learning process.
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Figure 3: ∆P%(t) (first two columns) and ∆P (t) (third column) obtained with UCB-LM with
different configurations.
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Figure 4: ∆P%(t) (first two columns) and ∆P (t) (third column) obtained with UCBV-M with
different configurations.
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5.4. Sensitivity Analysis

In this set of experiments, we evaluate the sensitivity of our UCB-L and
UCB-ML algorithms with respect to the maximum conversion probability pa-
rameter µmax. This study has been carried out by mis-specifying the µmax

parameter in the algorithms for the same configurations we described in Sec-
tion 5.1. More specifically, we evaluate our algorithms for each pair composed
of the actual µmax and of the µmax (mis-)specified in the algorithms. The actual
values of µmax we use are those used in Section 5.1. The values of µmax (mis-
)specified in the algorithms are µ̄max ∈ {1, 10−1, . . . , 10−6}. The performance
index is the average R%(T ). The results are obtained by averaging over 100
independent runs of the algorithms.

In Figure 5, the results for the UCB-L algorithm in the configuration with
K = 33 arms are presented, with different threshold distributions (SL and SH).
In the figure, the filled circles denote the experiments in which we correctly
specify the maximum conversion rate parameter (µmax = µ̄max). In these cases,
the UCB-L is always performing better than UCB1 (R%(N) < 1), except for
the case µmax = 1, in which we know from the theoretical analysis that UCB1
is strictly better than UCB-L. In the figure, it can be observed that the mis-
specification of the parameter of µ̄max = µmax

10 provides an improvement in the
R%(N) with respect to the one provided by a correctly specified one. This is
because the Chernoff bound, used in the UCB-L algorithm, might not be tight
in this specific setting, thus smaller upper bounds might still provide enough
confidence on the reward estimates and, at the same time, reduce the regret.
Conversely, increasing the value of the parameter with respect to the correct one
(µ̄max = 10µmax) the performance of the algorithm worsens, since we are using
larger bounds, still providing small improvements over the UCB1 algorithm
ones. The use of values µ̄max <

µmax

10 in the configuration µmax = 1 for SL and for
µmax = 1, µmax = 0.1 for SH provides results which are even worse than the one
obtained with UCB1 (R%(N) > 1). This suggests that the proposed algorithm
provides better results than UCB1 as long as the mis-specification stays within
one order of magnitude from the real value of the maximum conversion rate.

The same considerations can be drawn in the case we use the UCB-LM
algorithm instead of the UCB-L one. In Figure 6, we have a regret behaviour
which is similar to the one of UCB-L we analyzed in Figure 5. This suggests
that the sensitivity of the method does not change in the case the monotonicity
property is taken into account. We do not report the figure corresponding to
other configurations (K ∈ {5, 9, 17}) since they do not change the conclusion
we drew in this section.

6. Experimental Analysis in Nonstationary Environments

We experimentally evaluate the performance of our techniques in an abruptly
changing environment, that, as aforementioned, is one of the most common
nonstationary settings in e-commerce, e.g., it models the entrance of a new
player in the market. We compare the SW-UCB-M algorithm with UCBV-
M, as representatives of algorithms exploiting the monotonicity assumption,
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Figure 5: R%(N) obtained with UCB-L with different configurations: K = 33 arms, SL (left)
and SH (right). The error bars represents the 95% confidence intervals for the expected values.
The black like represents the performance of the UCB1 algorithm.
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Figure 6: R%(N) obtained with UCB-LM with different configurations: K = 33 arms, SL
(left) and SH (right). The error bars represents the 95% confidence intervals for the expected
values. The black like represents the performance of the UCB1 algorithm.

and SW-UCB from [27], as representatives of frequentist MAB designed for
nonstationary environments. In addition to the already presented SW-UCB-M,
we extend the sliding window approach to other algorithms proposing the SW-
UCB-LM and the SW-UCBV-M algorithms, to include the information about
the maximum conversion probability and to consider UCBV-like algorithms with
the monotonicity information, respectively. The pseudocode of these algorithms
is provided in Appendix B.
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6.1. Experimental Setting and Performance Indices

The experimental setting considers a number of rounds of N = 4 · 107 and
uses two different abruptly changing pdfs, denoted with SLHLH and SHLHL,
each of which contains three breakpoints at rounds t = 107, t = 2 · 107 and
t = 3 · 107. The threshold pdf switches from SL to SH or vice versa for SLHLH
and SHLHL, respectively, where SL and SH are defined as in Section 5. For
instance, SLHLH starts with SL in phase Φ1, then switches to SH in phase
Φ2 and so on. A number of 3 switches demonstrated to be sufficient to show
the behavior of the algorithms and, at the same time, tractable in terms of
computational effort (more switches would require longer experiments, requiring
a higher computational effort). For the sliding window algorithms, we choose a
sliding window τ = 4

√
N log(N) and we consider a parameter ξ = 0.6 for SW-

UCB and SW-UCB-M, as in [27]. We average the results over 100 independent
trials.

We redefine the performance indices using SW-UCB as a baseline in place
of UCB1 as follows:

R%(t) =
R̄t(U)

R̄t(SW-UCB)
,

∆P (t) =

t∑
t′=1

E
[
Vi(U,t′)

]
−

t∑
t′=1

E
[
Vi(SW-UCB,t′)

]
,

∆P%(t) =
∆P (t)∑t

t′=1 E[Vi(SW-UCB,t′) ]
,

where U is a generic policy, i(U,t) is the index chosen by policy U at time t.

6.2. Regret Analysis

The average R%(N) and the 95% confidence intervals are reported in Table 2
(the results of SW-UCB-L and SW-UCB-LM are omitted for µmax = 1, their
bound being always larger than the one used in SW-UCB). As in the stationary
case, we omit the evaluation of R%(t) for t < N , since we provide in the next
section a detailed discussion about how the profit provided by the algorithms
changes as t changes and we believe this latter evaluation is more significant in
practice than the evaluation of the dependency of the regret on time.

The first observation we provide is that, except for some specific cases, the
performance in terms of regret of each algorithm is similar in the two configura-
tions SLHLH and SHLHL. This shows that the switches between L and H and
vice versa do not significantly affect the performance of the algorithms. Instead,
the performance depends on the number of L and H configurations. This holds
for all the algorithms, µmax values, and the numbers of arms, except for the
following special cases:

• UCBV-M: it performs much worse in SLHLH than in SHLHL for µmax ∈
{10−1, 10−2, 10−3}. This result does not depend on the exploitation of
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the monotonicity, but on the fact that, once UCBV-M has learned a con-
figuration L or H, its bounds do not significantly change after an abrupt
change given that it does not exploit any sliding window and the optimal
arm in the configuration L has a very small relative reward in configura-
tion H. This does not hold when µmax = 10−4 since the sliding window
is excessively small, and the baseline SW-UCB cannot learn anything.

• SW-UCB-M and SW-UCBV-M: they perform worse in SLHLH than in
SHLHL for µmax = 1. This is an anomaly of our algorithms. In this
specific case, the cost of exploiting the monotonicity is larger than the
gain provided by the algorithm.

Summarily, we can observe that: SW-UCBV is the optimal algorithm for
µmax = 1, SW-UCBV-M is the optimal algorithm for µmax ∈ {10−1, 10−2},
and UCBV-M is the optimal algorithm for µmax ∈ {10−3, 10−4} except in the
configuration SLHLH , where, instead, for µmax = 10−3 SW-UCB-LM is the best
one. This is because the exploitation of the monotonicity allows an algorithm to
perform better, but it requires a cost, i.e., the one incurred when a union bound
over 1 ≤ j ≤ i is performed. When the setting is easy (e.g., µmax is very high),
the improvement provided by the monotonicity is smaller than the cost needed
for its exploitation. Instead, for µmax ∈ {10−1, 10−2}, the cost required for
the exploitation of the monotonicity is much lower than the gain. When µmax

is smaller, e.g., µmax ∈ {10−3, 10−4}, the setting is too hard, and we suppose
that an optimal solution to the problem would require a sliding window longer
than that one used here. Indeed, the fact that UCBV-M is the best algorithms
essentially shows that abstaining from learning after the first abrupt change is
better than trying to learn the change. In these settings that are so hard, a
different approach should be used: for instance, one could identify the abrupt
change and employ different stationary MAB policies, one per phase.

Finally, we remark that in every configuration it is possible to outperform
the baseline and in many cases the reduction of regret is significant.

6.3. Profit Analysis

The average ∆P%(t) and ∆P (t) for t ∈ {1, . . . , 107} obtained with SW-UCB-
LM and SW-UCBV-M (with respect to the results obtained with SW-UCB and
5 arms) are reported in Figure 7 and Figure 8, respectively.6

The main difference between the results in the stationary settings and those
in nonstationary settings concerns the trend of ∆P%(t). In the case of the
stationary settings, ∆P%(t) achieves a maximum and subsequently goes asymp-
totically to zero, showing that our algorithms provide a gain in the early stages
of the learning process. Instead, in the case of nonstationary settings, our al-
gorithms repeatedly provide a gain at each abrupt change. This is showed by
the fact that ∆P%(t) does not go to zero as t increases. Therefore, the ∆P (t)

6Results for SW-UCB-LM in the case µmax = 1 are not reported since this algorithm
requires µmax <

1
2

to be effective.
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has an upward trend over time. To summarize, these results provide evidence
for a promising application of the proposed SW algorithms in the nonstationary
setting.
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Figure 7: ∆P%(t) (first two columns) and ∆P (t) (third column) obtained with SW-UCB-LM
with different configurations.
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Figure 8: ∆P%(t) (first two columns) and ∆P (t) (third column) obtained with SW-UCBV-M
with different configurations.
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Table 2: Results concerning R% in nonstationary settings (averaged values over 100 runs, ±
95% confidence intervals).

SLHLH

µmax |A| SW-UCB-M SW-UCB-L SW-UCB-LM SW-UCBV SW-UCBV-M UCBV-M

1

5 1.02± 0.00 —— —— 0.95± 0.00 0.98± 0.02 10.67± 0.00

9 1.82± 0.26 —— —— 0.94± 0.00 1.46± 0.18 10.18± 0.00

17 2.29± 0.35 —— —— 0.92± 0.00 2.44± 0.37 9.57± 0.00

33 2.96± 0.44 —— —— 0.91± 0.00 3.49± 0.44 8.60± 0.06

10−1

5 0.82± 0.01 1.08± 0.00 0.88± 0.01 0.33± 0.00 0.25± 0.02 5.71± 0.00

9 0.72± 0.01 1.05± 0.00 0.75± 0.01 0.51± 0.00 0.40± 0.05 4.77± 0.00

17 0.63± 0.02 1.04± 0.00 0.64± 0.01 0.66± 0.00 0.67± 0.13 4.41± 0.03

33 0.57± 0.02 1.04± 0.00 0.57± 0.01 0.82± 0.00 0.68± 0.13 4.01± 0.08

10−2

5 0.98± 0.00 0.88± 0.00 0.79± 0.00 0.74± 0.00 0.58± 0.01 3.37± 0.05

9 0.98± 0.00 0.89± 0.00 0.76± 0.00 0.88± 0.00 0.59± 0.01 3.10± 0.03

17 0.97± 0.00 0.90± 0.00 0.71± 0.00 0.98± 0.00 0.60± 0.01 2.97± 0.07

33 0.97± 0.00 0.92± 0.00 0.69± 0.01 1.07± 0.00 0.60± 0.02 2.78± 0.13

10−3

5 1.10± 0.00 0.92± 0.00 0.90± 0.00 1.09± 0.00 1.08± 0.00 3.00± 0.11

9 1.14± 0.00 0.93± 0.00 0.92± 0.00 1.14± 0.00 1.14± 0.00 2.65± 0.14

17 1.17± 0.00 0.94± 0.00 0.93± 0.00 1.19± 0.00 1.18± 0.00 1.84± 0.24

33 1.19± 0.00 0.96± 0.00 0.93± 0.00 1.21± 0.00 1.20± 0.01 1.25± 0.23

10−4

5 1.12± 0.00 0.97± 0.00 1.04± 0.00 1.24± 0.00 1.49± 0.00 1.34± 0.24

9 1.17± 0.00 0.97± 0.00 1.08± 0.00 1.24± 0.00 1.56± 0.00 0.57± 0.01

17 1.21± 0.00 0.98± 0.00 1.11± 0.00 1.26± 0.00 1.63± 0.00 0.55± 0.01

33 1.23± 0.00 0.98± 0.00 1.12± 0.00 1.26± 0.00 1.64± 0.01 0.54± 0.00

SHLHL

µmax |A| SW-UCB-M SW-UCB-L SW-UCB-LM SW-UCBV SW-UCBV-M UCBV-M

1

5 1.01± 0.00 —— —— 0.96± 0.00 0.97± 0.01 1.44± 0.00

9 0.99± 0.00 —— —— 0.95± 0.00 0.96± 0.01 1.32± 0.00

17 0.97± 0.01 —— —— 0.93± 0.00 0.94± 0.01 1.29± 0.00

33 0.92± 0.01 —— —— 0.89± 0.00 0.89± 0.01 1.18± 0.00

10−1

5 0.86± 0.01 1.08± 0.00 0.90± 0.01 0.33± 0.00 0.29± 0.01 1.43± 0.00

9 0.75± 0.01 1.05± 0.00 0.78± 0.01 0.51± 0.00 0.43± 0.03 1.10± 0.00

17 0.66± 0.01 1.04± 0.00 0.67± 0.01 0.66± 0.00 0.53± 0.07 1.04± 0.01

33 0.59± 0.01 1.04± 0.00 0.60± 0.01 0.82± 0.00 0.57± 0.07 0.95± 0.01

10−2

5 0.98± 0.00 0.88± 0.00 0.79± 0.00 0.74± 0.00 0.60± 0.01 0.85± 0.00

9 0.98± 0.00 0.89± 0.00 0.76± 0.00 0.88± 0.00 0.64± 0.01 0.76± 0.01

17 0.97± 0.00 0.90± 0.00 0.73± 0.00 0.98± 0.00 0.63± 0.01 0.74± 0.01

33 0.97± 0.00 0.92± 0.00 0.71± 0.00 1.07± 0.00 0.63± 0.01 0.72± 0.01

10−3

5 1.10± 0.00 0.92± 0.00 0.90± 0.00 1.09± 0.00 1.08± 0.00 0.83± 0.03

9 1.14± 0.00 0.93± 0.00 0.92± 0.00 1.14± 0.00 1.14± 0.00 0.76± 0.02

17 1.17± 0.00 0.94± 0.00 0.93± 0.00 1.19± 0.00 1.18± 0.00 0.75± 0.02

33 1.19± 0.00 0.96± 0.00 0.94± 0.00 1.21± 0.00 1.21± 0.00 0.75± 0.01

10−4

5 1.12± 0.00 0.97± 0.00 1.04± 0.00 1.24± 0.00 1.49± 0.00 0.85± 0.02

9 1.17± 0.00 0.97± 0.00 1.08± 0.00 1.24± 0.00 1.56± 0.00 0.82± 0.01

17 1.21± 0.00 0.98± 0.00 1.10± 0.00 1.26± 0.00 1.63± 0.00 0.81± 0.01

33 1.23± 0.00 0.98± 0.00 1.12± 0.00 1.26± 0.00 1.65± 0.00 0.80± 0.01
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7. Conclusions and Future Works

In this paper, we focus on the problem of learning the best gross margin to
maximize the seller profit, while minimizing the regret caused by the exploration
of sub-optimal gross margins. Previous theoretical works focus on the selection
of a finite set of gross margins, while previous heuristic works propose algorithms
for specific settings without any theoretical guarantee on the worst-case regret.
In this paper, we study how to exploit two properties of the pricing problem to
improve the empiric performance of general-purpose bandit algorithms without
losing their theoretical guarantees on the regret. The two properties we study
hold in general settings: the first one is the (decreasing) monotonicity of the
conversion rate on the gross margins, while the second one is the a priori infor-
mation about the maximum conversion rate µmax. Furthermore, we focus both
on stationary settings and nonstationary settings. We provide some algorithms
that we summarize in Table 3.

Stationary Nonstationary
Generic Monotonic Generic Monotonic

µ ∈ [0, 1]
UCB1,
UCB-V

UCB1-M,
UCB-V-M

SW-UCB
SW-UCB-M,
SW-UCBV-M

µ ∈ [0, µmax] UCB-L UCB-LM SW-UCB-L SW-UCB-LM

Table 3: Algorithms for the different assumptions and scenarios analysed in the paper. We
use the boldface for the algorithms proposed in this paper.

We provide a wide experimental evaluation of our algorithms, comparing
them with other frequentist MAB algorithms with theoretical guarantees that
do not exploit the two aforementioned properties. In this way, we evaluate the
improvement obtained thanks to the exploitation of the problem characteristics.
We elect two algorithms as the best ones: UCBV-M and UCB-LM in stationary
settings and SW-UCBV-M and SW-UCB-LM in nonstationary ones. In most
of the configurations, our algorithms perform better than the general-purpose
ones in the early stages of the learning process. In stationary settings, we
observe that our algorithms outperform the other algorithms in terms of profit
thanks to a greater gain at the beginning of the learning process. This gain
is then kept constant up to the end of the process. As a result, the ratio in
time between the profit provided by our algorithms and the baselines achieves a
maximum and, subsequently, it asymptotically goes to zero as the time increases.
In nonstationary settings, instead, such a ratio does not go asymptotically to
zero and thus the difference of profits between our algorithms and the baselines
increases as the time increases. This is of paramount importance in practice,
potentially allowing a company to dramatically increase its profit.

Future developments of this work may study the exploitation of the mono-
tonicity property in continuous MAB settings. Furthermore, we are also inter-
ested in studying a generalized version of the monotonicity property, where the
ordering among expected values is only partial. Finally, our goal is to study
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how the two aforementioned properties can be exploited with Bayesian MAB
algorithms such as the Thompson Sampling.
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Appendix A. Proofs of the theorems

Appendix A.1. Proof of Theorem 1

Theorem 1. If policy UCB1-M is run over a stationary MAB setting with a
monotonic set A, the expected regret after N rounds is at most:

RN ≤
∑

i|ai 6=ai∗

8a2
i log(N)

∆i
+

∑
i|ai 6=ai∗

2a2
i log(K)

∆i
+

(
1 +

π2

3

) K∑
i=1

∆i,

where ∆i := ai∗µi∗ − aiµi,∀i ∈ {1, . . . ,K}.

Proof. Let us remind that we denote with i∗ := arg maxi∈{1,...,K} aiµi the
index corresponding to the optimal arm ai∗ . Similarly to [31], we want to
compute the expected number of times the policy UCB1-M does not pick the
optimal arm ai∗ or, more formally, E[Ti(N)], ∀ai 6= ai∗ and compute the regret
as:

RN =
∑

i|ai 6=ai∗
∆iE[Ti(N)].

Consider the round of the learning process at which a specific arm ai has
been selected for s rounds and define:

• j̄(i, t) := j̄ (with abuse of notation) as the index j ∈ {1, . . . , i} minimizing

the quantity xji,t +
√

4 log(t)+log(i)
2Tji(t−1) , i.e., the upper bound of arm ai;

• j̄∗ := j̄(i∗, t) as the index j ∈ {1, . . . , i∗} minimizing the quantity xji∗,t +√
4 log(t)+log(i∗)

2Tji∗ (t−1) , i.e., the upper bound of arm ai∗ ;

• Xi,(s) is the unbiased estimate of µi in the case we collected a total of s
samples from arm ai;

• X j̄i,(s) is the unbiased estimate of µj̄i,t,s = E
[
X j̄i,(s)

]
, in the case we

collected a total of s samples from arm ai (and thus we use s′ ≥ s samples
to estimate µj̄i,s);

• ci,t,s :=
√

4 log(t)+log(i)
2s as the Hoeffding bound with confidence t−4

i for

Xi,(s) after t rounds;

• cji,t,s :=
√

4 log(t)+log(i)
2s′ as the Hoeffding bound with confidence t−4

i for

Xji,(s) after t rounds, in the case arm ai has been pulled a total of s times
and the arms {aj , . . . , ai} have been chosen in total s′ > s times.
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We have that, for each l > 0:

Ti(N) = 1 +

N∑
t=K+1

1 {it = i} ≤ l +

N∑
t=K+1

1 {it = i, Ti(t− 1) ≥ l}

≤ l +

N∑
t=K+1

1
{
ai∗X j̄∗i∗,t + ai∗cj̄∗i∗,t,Ti∗ (t−1) ≤ aiX j̄i,t+

+ai cj̄i,t,Ti(t−1), Ti(t− 1) ≥ l
}

≤ l +

N∑
t=K+1

1

{
min

0<s<t

(
ai∗X j̄∗i∗,(s) + ai∗cj̄∗i∗,t,s

)
≤ max
l<si<t

(
aiX j̄i,(si) + aicj̄i,t,si

)}

≤ l +

∞∑
t=1

t−1∑
s=1

t−1∑
si=l

1
{
ai∗X j̄∗i∗,(s) + ai∗cj̄∗i∗,t,s ≤ aiX j̄i,(si) + aicj̄i,t,si

}
.

where we denoted with 1 {B} the indicator function of the event B.
If we consider:

ai∗X j̄∗i∗,(s) + ai∗cj̄∗i∗,t,s ≤ aiX j̄i,(si) + aicj̄i,t,si ,

ai∗X j̄∗i∗,(s) + ai∗cj̄∗i∗,t,s − aiX j̄i,(si) − aicj̄i,t,si ≤ 0,

ai∗X j̄∗i∗,(s) − ai∗µi∗ + ai∗cj̄∗i∗,t,s − aiXi,t,(si) + aiµi + aici,t,si+

+ ai∗µi∗ − aiµi + aiXi,(si) − aiX j̄i,(si) − aicj̄i,t,si − aici,t,si ≤ 0,

we have that that, if the previous inequality is satisfied, at least one of the
following inequalities is satisfied:

ai∗X j̄∗i∗,(s) ≤ ai∗µi∗ − ai∗cj̄∗i∗,t,s (A.1)

aiXi,(si) ≥ aiµi + aici,t,si (A.2)

ai∗µi∗ − aiµi + aiXi,(si) − aiX j̄i,(si) − aicj̄i,t,si − aici,t,si ≤ 0. (A.3)

We need to bound the probabilities that the each one of the previous events
occurs.

Probability of Event (A.1) By considering the fact that X j̄∗i∗,(s) +cj̄∗i∗,t,s
is an upper bound for µj̄i,t,s and thanks to the monotonicity assumption over
µi∗ , we can bound the probability of the events in Equation (A.1) as follows:

P
(
ai∗X j̄∗i∗,(s) ≤ ai∗µi∗ − ai∗cj̄∗i∗,t,s

)
= P

(
X j̄∗i∗,(s) ≤ µi∗ − cj̄∗i∗,t,s

)
≤ P

(
X j̄∗i∗,(s) + cj̄∗i∗,t,s ≤ µi∗

)
≤ P

(
X j̄∗i∗,(s) + cj̄∗i∗,t,s ≤ µj̄i,t,s

)
≤ e−4 log t = t−4,

where the i term disappeared with the union bound over Xji∗,(s) such that
1 ≤ j ≤ i∗.

39



Probability of Event (A.2) By considering the Hoeffding bound we have
that the event Equation A.2 is bounded by:

P(aiXi,(si) ≥ aiµi + aici,t,si)

= P
(
Xi,(si) ≥ µi + ci,t,si

)
≤ e−4 log t−log i =

t−4

i
≤ t−4.

Probability of Event (A.3) Note that since the algorithm chooses the
tightest bound among the set Xji,(s) + cji,t,s with j ≤ i we have:

aiX j̄i,(si) + aicj̄i,t,si ≤ aiXi,(si) + aici,t,si ,

aiX j̄i,(si) − aiXi,(si) + aicj̄i,t,si ≤ aici,t,si ,
aiXi,(si) − aiX j̄i,(si) − aicj̄i,t,si ≥ −aici,t,si

If we consider l =
⌈

2a2
i [4 log(t)+log(i)]

∆2
i

⌉
the event in Equation (A.3) is not

possible since:

0 ≥ ai∗µi∗ − aiµi + aiXi,(si) − aiX j̄i,(si) − aicj̄i,t,si︸ ︷︷ ︸
≥−aici,t,si

−aici,t,si (A.4)

≥ ∆i − 2ai

√
4 log(t) + log(i)

2l
> ∆i −∆i = 0, (A.5)

where we recall that ∆i := ai∗µi∗ − aiµi.
Thus, since log(t) ≤ log(N) and log(i) ≤ log(K), ∀i we have:

E[Ti(N)] ≤
⌈

2a2
i [4 log(N) + log(K)]

∆2
i

⌉
+

∞∑
t=1

t−1∑
s=1

t−1∑
si=l

2t−4

≤ 8a2
i log(N)

∆2
i

+
2a2
i log(K)

∆2
i

+ 1 +
π2

3

and the total regret becomes (since
∑K
i=1 E[Ti(N)] = N):

RN = ai∗µi∗N −
K∑
i=1

E[Ti(N)]aiµi =

K∑
i=1

(ai∗µi∗ − aiµi)E[Ti(N)]

≤
∑

i|ai 6=ai∗

8a2
i log(N)

∆i
+

∑
i|ai 6=ai∗

2a2
i log(K)

∆i
+

(
1 +

π2

3

) K∑
i=1

∆i,

which concludes the proof.

Appendix A.2. Proof of Theorem 2

Theorem 2. If policy UCBV-M is run with ξ = 1.2 and c = 1 over a setting
with a monotonic set A, the expected regret after N rounds is at most:

RN ≤
12

5

∑
i|ai 6=ai∗

a2
i

(
σ2
i

∆i
+

32

15

)
log(N)+

∑
i|ai 6=ai∗

∆i

[
1 + a2

i

(
σ2
i

∆2
i

+
2

∆i

)
log(K)

]
,
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where σ2
i := V ar(Xi,n), ∀i ∈ {1, . . . ,K},∀ n ∈ {1, . . . , Ti(N)}.

Proof. In what follows we make use of the notation used in Theorem 1. By
following the proof of Theorem 3 in [32] we would like to bound the number of
times a suboptimal arm is played:

E[Ti(N)] ≤ li +

N∑
t=li+1

t−1∑
s=li

P
(
aiX j̄i,(s) + aicj̄i,t,s ≥ ai∗µi∗

)
︸ ︷︷ ︸

Ti1

+

+

N∑
t=li+1

t−1∑
s=1

P
(
ai∗X j̄∗i∗,(s) + ai∗cj̄∗i∗,t,s ≤ ai∗µi∗

)
︸ ︷︷ ︸

Ti2

,

where the inequality is due to Theorem 2 in [32]. Let us consider the two
contribution to the regret separately.

Bound over Ti1 The first contribution can be bounded as follows:

Ti1 =

t−1∑
s=li

P
(
aiX j̄i,(s) − aiXi,(s) + aicj̄i,t,s − ai∗µi∗ + aiµi+

+aici,t,s + aiXi,(s) − aiµi − aici,t,s ≥ 0
)

≤
t−1∑
s=li

P
(
aiX j̄i,(s) − aiXi,(s) + aicj̄i,t,s − ai∗µi∗ + aiµi + aici,t,s > 0

)
+ (A.6)

+

t−1∑
s=li

P(aiXi,(s) − aiµi − aici,t,s ≥ 0). (A.7)

By considering s = li =
⌈
2a2
i

(
σ2
i

∆2
i

+ 2
∆i

)
max{c, 1}ξ(log(t) + log(i))

⌉
, where

σ2
i := V ar(Xit), ∀i ∈ {1, . . . ,K}, t ∈ {1, . . . , N}, we have that:

0 < aiX j̄i,(s) − a2
iXi,(s) + aicj̄i,t,s︸ ︷︷ ︸
≤aici,t,s

−ai∗µi∗ + aiµi + aici,t,s

≤ 2aici,t,s −∆i ≤ ∆i −∆i = 0,

where we used the fact that, by the choice made by the proposed algorithm,
we have aiX j̄i,(s) + aicj̄i,t,s ≤ aiXi,(s) + aici,t,sfor each j ∈ {1, . . . , i}. Thus,
the contribution of the term in Equation (A.6) to the regret is null since the
aforementioned event is impossible.

The term in Equation (A.7) can be bounded by Theorem 1 in [32] in the
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following way:

t−1∑
s=li

P(aiXi,(s) − aiµi − aici,t,s ≥ 0)

t−1∑
s=li

P(aiXi,(s) − aiµi − aici,t,s ≥ 0) ≤ β(t, c, i) ≤ β(t, c)

where β(t, c, i) := 3 min{c, 1} inf1<α≤3

[(
min

{
log(t)
log(α) , t

})
(ti)−

ξ
α

]
and β(t, c) :=

β(t, c, 1).
Bound over Ti2 By exploiting the monotonicity, i.e., since µi∗ ≤ µj̄∗i∗,t,s

and by considering Theorem 1 in [32] we have:

Ti2 =

t−1∑
s=1

P
(
ai∗X j̄∗i∗,(s) + ai∗cj̄∗i∗,t,s ≤ ai∗µi∗

)
=

t−1∑
s=1

P
(
X j̄∗i∗,(s) + cj̄∗i∗,t,s ≤ µi∗

)
≤

t−1∑
s=1

P
(
X j̄∗i∗,(s) + cj̄∗i∗,t,s ≤ µj̄∗i∗

)
≤ β(t, c),

where for the monotonicity µj̄∗i∗ ≥ µi∗ and we used a union bound over all the
considered bounds (j ∈ {1, . . . , i}).

Regret RN: Summing up, since log(t) ≤ log(N) and log(i) ≤ log(K), we
have:

RN =

K∑
i=1

E[Ti(N)]∆i ≤
∑

i|ai 6=ai∗
(li +

N∑
t=li+1

Ti1 + Ti2)

≤
∑

i|ai 6=ai∗

[
1 + 2a2

i

(
σ2
i

∆2
i

+
2

∆i

)
max{c, 1}ξ(log(t) + log(i)) + 2

N∑
t=li+1

β(t, c)

]
∆i

≤
∑

i|ai 6=ai∗

[
12

5
a2
i

(
σ2
i

∆i
+ 2

)
log(N) + 4c′ log(N)

]
+

+
∑

i|ai 6=ai∗
∆i

[
1 + a2

i

(
σ2
i

∆2
i

+
2

∆i

)
log(K)

]

≤ 12

5

∑
i|ai 6=ai∗

a2
i

(
σ2
i

∆i
+

32

15

)
log(N) +

∑
i|ai 6=ai∗

∆i

[
1 + a2

i

(
σ2
i

∆2
i

+
2

∆i

)
log(K)

]
,

where by choosing ξ = 1.2 and c = 1 we have
∑N
t=li+1 β(t, c) ≤ c′ 2 log(N)

∆k
with

c′ ≤ 0.08 (see proof of Theorem 4 in [32] for details). This concludes the proof.
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Appendix A.3. Proof of Theorem 4

Let us recall that thanks to the Chernoff’s theorem we have:

Theorem 3 (Theorem 4 in [35], Lower tail). Given a set of Ti(t−1) inde-
pendent and identically distributed random variables {Xi,1, . . . , Xi,Ti(t−1)} such
that Xi,s ∼ Be(µi), for any ε > 0 we have:

P(Xi,t + ε ≤ µi) ≤ e−
Ti(t−1)ε2

2µi .

and also:

Theorem 8 (Theorem 4 in [35], Upper tail). Given a set of Ti(t−1) inde-
pendent and identically distributed random variables {Xi,1, . . . , Xi,Ti(t−1)} such
that Xi,s ∼ Be(µi), for any ε > 0 we have:

P(Xi,t − ε ≥ µi) ≤ e
−Ti(t−1)ε2

2µi+
ε
3 .

Theorem 4. If policy UCB-L is run over a stationary MAB setting with a set
of arms A in which each arm ai ∈ A has outcome Xi,t such that E[Xi,t] = µi ≤
µmax ≤ 1

2 for each t ∈ {1, . . . , N}, the expected regret after N rounds is at most:

RN ≤
∑

i|ai 6=ai∗

32µmaxa
2
i log(N)

∆i
+

[
1 +

π2

6
+ ζ

(
10

7

)] K∑
i=1

∆i,

where ζ(·) is the Riemann zeta function.

Proof. In what follows we make use of the notation used in Theorem 1. Let
us recall that µmax ≥ µi, ∀i ∈ {1, . . . ,K}. By defining:

εi,t,Ti(t−1) :=

√
8µmax log(t)

Ti(t− 1)
,

we have that, similarly to what has been derived in Theorem 1, for each l > 0:

Ti(N) ≤ l +

∞∑
t=1

t−1∑
s=1

t−1∑
si=l

1{ai∗Xi∗,(s) + ai∗εi∗,t,s ≤ aiXi,(si) + aiεi,t,si}.

If we consider the event in the previous inequality, we have:

ai∗Xi∗,(s) + ai∗εi∗,t,s ≤ aiXi,(si) + aiεi,t,si

ai∗Xi∗,(s) − ai∗µi∗ + ai∗εi∗,t,s + ai∗µi∗ ≤ aiXi,(si) − aiµi − aiεi,t,si + aiµi + 2aiεi,t,si

ai∗Xi∗,(s) − ai∗µi∗ + ai∗εi∗,t,s − aiXi,(si) + aiµi + aiεi,t,si + ai∗µi∗ − aiµi − 2aiεi,t,si ≤ 0,

we have that it implies that at least one of the following inequalities is satisfied:

ai∗Xi∗,(s) ≤ ai∗µi∗ − ai∗εi∗,t,s (A.8)

aiXi,(si) ≥ aiµi + aiεi,t,si (A.9)

ai∗µi∗ − aiµi < 2aiεi,t,si . (A.10)
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Let us focus on the event in Equation (A.8). Thanks to Theorem 3 we are able
to bound the probability of this event:

P(ai∗Xi∗,(s) ≤ ai∗µi∗ − ai∗εi∗,t,s) = P
(
Xi∗,(s) ≤ µi∗ − εi∗,t,s

)
≤ e−

s(εi∗,t,s)2

2µ∗ ≤ e−
s(εi∗,t,s)2

2µmax = e−4 log t = t−4.

By relying on the upper tail of the Chernoff’s bound, as described in Theo-
rem 8 (cited in this appendix) we can bound the probability of the event in
Equation (A.9):

P(aiXi,(si) ≥ aiµi + aiεi,t,si) = P
(
Xi,(si) ≥ µi + εi,t,si

)
≤ exp

{
− si(εi,t,si)

2

2µi +
εi,t,si

3

}
≤ e−

si(εi,t,si
)2

7
3
µmax ≤ t− 24

7 ,

where we consider εi,t,si ≤ µmax and µi ≤ µmax ≤ 1
2 . At last, if we focus

on the event in Equation (A.10) and we consider l =
⌈

32µmaxa
2
i log(t)

∆2
i

⌉
, where

∆i = ai∗µi∗ − aiµi, the event in Equation (A.3) is not possible since:

0 ≥ ai∗µi∗ − aiµi − 2aiεi,t,si

≥︸︷︷︸
si≥l

ai∗µi∗ − aiµi − 2aiεi,t,l ≥ ai∗µi∗ − aiµi − ai∗µi∗ − aiµi = 0.

Finally we have:

E[Ti(N)] ≤
⌈

32µmaxa
2
i log(t)

∆2
i

⌉
+

∞∑
t=1

t−1∑
s=1

t−1∑
si=l

(t−4 + t−
24
7 )

≤ 32µmaxa
2
i log(N)

∆2
i

+ 1 +
π2

6
+ ζ

(
10

7

)
where ζ(·) is the Riemann zeta function. The total regret becomes (since∑K
i=1 E[Ti(N)] = N):

RN = ai∗µi∗N −
K∑
i=1

E[Ti(N)]aiµi =

K∑
i=1

(ai∗µi∗ − aiµi)E[Ti(N)]

≤
∑

i|ai 6=ai∗

32µmaxa
2
i log(N)

∆i
+

[
1 +

π2

6
+ ζ

(
10

7

)] K∑
i=1

∆i,

which concludes the proof.

Appendix A.4. Proof of Theorem 5

Theorem 5. If policy UCB-LM is run over a stationary MAB setting with a
monotonic set A in which each arm ai ∈ A has outcome Xi,t such that E[Xi,t] =
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µi ≤ µmax ≤ 1
2 for each t, the expected regret after N rounds is at most:

RN ≤
∑

i|ai 6=ai∗

32µmaxa
2
i log(N)

∆i
+

∑
i|ai 6=ai∗

8µmaxa
2
i log(K)

∆i

+

[
1 +

π2

6
+ ζ

(
10

7

)] K∑
i=1

∆i,

where ζ(·) is the Riemann zeta function.

Proof. The proof is a straightforward combination of the arguments used for
the UCB1-M and UCB-L ones. Consider the round of the learning process at
which a specific arm ai has been selected for s rounds and define:

• j̄(i, t) := j̄ (with abuse of notation) as the index j ∈ {1, . . . , i} minimizing

the quantity xji,t +
√

2µmax[4 log(t)+log(i)]
Tji(t−1) , i.e., the upper bound of arm ai;

• j̄∗ := j̄(i∗, t) as the index j ∈ {1, . . . , i∗} minimizing the quantity xji∗,t +√
2µmax[4 log(t)+log(i∗)]

Tji∗ (t−1) , i.e., the upper bound of arm ai∗ ;

• Xi,(s) is the unbiased estimate of µi in the case we collected a total of s
samples from arm ai;

• X j̄i,(s) is the unbiased estimate of µj̄i,t,s = E
[
X j̄i,(s)

]
, in the case we

collected a total of s samples from arm ai (and thus we have s′ ≥ s
samples to estimate µj̄i,s);

• ci,t,s :=
√

2µmax[4 log(t)+log(i)]
s as the Hoeffding bound with confidence t−4

i

for Xi,(s) after t rounds;

• cji,t,s :=
√

2µmax[4 log(t)+log(i)]
s′ as the Hoeffding bound with confidence t−4

i

for Xji,(s) after t rounds, in the case arm ai has been pulled a total of s
times and the arms {aj , . . . , ai} have been chosen in total s′ > s times.

We have that, for each l > 0:

Ti(N) ≤ l +

∞∑
t=1

t−1∑
s=1

t−1∑
si=l

1
{
ai∗X j̄∗i∗,(s) + ai∗cj̄∗i∗,t,s ≤ aiX j̄i,(si) + aicj̄i,t,s

}
and consequently we only need to bound the probability of these three events:

ai∗X j̄∗i∗,(s) ≤ ai∗µi∗ − ai∗cj̄
∗i∗,t,s (A.11)

aiXi,(si) ≥ aiµi + aici,t,si (A.12)

ai∗µi∗ − aiµi + aiXi,(si) − aiX j̄i,(si) − aicj̄i,t,si − aici,t,si ≤ 0. (A.13)
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Similarly to what has been done for Theorem 1, the probability of the event
in Equation (A.11) can be bounded by t−4 by using the monotonicity assump-
tion and Theorem 3, the one corresponding to the event in Equation (A.12) is

bounded by t
24
7 by using the Chernoff theorem (Theorem 8, which considers

the upper tail) and the event in Equation (A.13) is not possible if we choose

l =
⌈

8a2
iµmax[4 log(t)+log(i)]

∆2
i

⌉
. Thus, by considering that log(t) ≤ log(N) and

log(i) ≤ log(K), ∀i, we have:

RN = ai∗µi∗N −
K∑
i=1

E[Ti(N)]aiµi =

K∑
i=1

(ai∗µi∗ − aiµi)E[Ti(N)]

≤
∑

i|ai 6=ai∗

32µmaxa
2
i log(N)

∆i
+

∑
i|ai 6=ai∗

8µmaxa
2
i log(K)

∆i
+

[
1 +

π2

6
+ ζ

(
10

7

)] K∑
i=1

∆i,

which concludes the proof.

Appendix A.5. Proof of Theorem 7

Theorem 7. If policy SW-UCB-M is run over a nonstationary MAB setting
S(B), for any τ ∈ N and ξ > 1

2 , the expected regret after N rounds is at most:

RN ≤
K∑
i=1

N
τ

4a2
i ξ[log(i) + log(τ)]

∆i
+ aiΥNτ +

2N

τ

 log(τ)

log
(

1 + 4
√

1− 1
2ξ

)

 ,

where ΥN is the number of breakpoints before N and

∆i := min
φ∈{1,...,ΥN}

(
ai∗φµi∗φ,φ − aiµi,φ

)
1{i 6= i∗φ} ∀i ∈ {1, . . . ,K},

denotes the minimum, over all the phases Φφ in which the arm ai is not optimal,
of the difference of the expected reward ai∗φµi∗φ,φ of the best arm ai∗φ and the
expected reward aiµi,φ of the arm ai.

Proof. Consider the phases φ ∈ {1, . . . ,ΥN} introduced in Section 2. Let us
define:

Ai,φ(τ) =
4a2
i ξ[log(i) + log(τ)]

∆2
i,φ

,

where ∆i,φ = ai∗φµi∗φ,φ − aiµi,φ, ∀i ∈ {1, . . . ,K} \ {i∗φ}.
Let us denote with Ti(Φ

′
φ) the number of times an arm ai, with i ∈ {1, . . . ,K}\

{i∗φ}, has been played when it was not the best arm during the rounds t ∈ Φ′φ :=
{t|bφ−1 + τ ≤ t < bφ}. We consider τ < Nφ, i.e., τ is smaller than the number
of rounds in each phase.7

7We make this assumption for ease of notation. In the case ∃τ > Nφ, it is straightforward
to extend the analysis.
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We can bound the number of times we are pulling an arm as:

Ti(N) =

ΥN∑
φ=1

Ti(Φφ) ≤
ΥN∑
φ=1

τ + Ti(Φ
′
φ)

where we assume that τ > K.
Let us focus on a single phase Φφ. Consider the number of times a suboptimal

arm ai 6= ai∗φ has been pulled, we have:

Ti(Φ
′
φ) =

∑
t∈Φ′φ

1{it = i}

≤
∑
t∈Φ′φ

1{it = i, Ti(t− 1, τ) < Ai,φ(τ)}+
∑
t∈Φ′φ

1{it = i, Ti(t− 1, τ) ≥ Ai,φ(τ)}

(A.14)

where it is the index of the arm ait selected at round t by policy SW-UCB-M
with a window of size τ .

By using Lemma 25 in [27], we can bound the first term of Equation (A.14),
we have:

Ti(Φ
′
φ) ≤

⌈ |Φ′φ|
τ

⌉
Ai,φ(τ) +

∑
t∈Φ′φ

1{it = i, Ti(t− 1, τ) ≥ Ai,φ(τ)}

≤
⌈
Nφ − τ
τ

⌉
Ai,φ(τ) +

∑
t∈Φ′φ

1{it = i, Ti(t− 1, τ) ≥ Ai,φ(τ)}

≤ Nφ
τ
Ai,φ(τ) +

∑
t∈Φ′φ

1{it = i, Ti(t− 1, τ) ≥ Ai,φ(τ)}. (A.15)

Let us focus on the second term of the last expression. The event it = i
occurs when:

ai∗φX j̄∗i∗φ,t,τ
+ ai∗φεi∗φ,t,Tj̄∗i∗ (t−1),τ ≤ aiX j̄i,t,τ + aiεi,t,Tj̄i(t−1),τ

ai∗φX j̄∗i∗φ,t,τ
− ai∗φµi∗φ,φ + ai∗φεi∗φ,t,Tj̄∗i∗ (t−1),τ − aiXi,t,τ + aiµi,φ + aiεi,t,Ti(t−1),τ+

+ ai∗φµi∗φ,φ − aiµi,φ + aiXi,t,τ − aiX j̄i,t,τ − aiεi,t,Ti j̄i(t−1),τ − aiεi,t,Ti(t−1),τ

where εi,t,Tji(t−1),τ :=

√
ξ[log(i) + log(min{t, τ})]

Tji(t− 1)
=

√
ξ[log(i) + log(τ)]

Tji(t− 1)
, since

t ∈ Φ′φ ⇒ t > τ and it is contained in the union of the following three events:

ai∗φX j̄∗i∗φ,t,τ
≤ ai∗φµi∗φ,φ − ai∗φεi∗φ,t,Tj̄∗i∗ (t−1),τ ; (A.16)

aiXi,t,τ ≥ aiµi,φ + aiεi,t,Ti(t−1),τ ; (A.17)

ai∗φµi∗φ,φ − aiµi,φ + aiXi,t,τ − aiX j̄i,t,τ − aiεi,t,Tj̄i(t−1),τ − aiεi,t,Ti(t−1),τ ≤ 0; .

(A.18)
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Let us define δ = εi,t,Ti(t−1),τ

√
Ti(t− 1, τ) =

√
ξ[log(i) + log(τ)] and con-

sider the probability of the event in Equation (A.17), we have:

P

(
aiXi,t,τ ≥ aiµi,φ + ai

δ√
Ti(t− 1, τ)

)
= P

(
Xi,t,τ − µi,φ ≥

δ√
Ti(t− 1, τ)

)

≤ P

(
Xi,t,τ − µi,φ ≥

δ√
Ti(t− 1, τ)

)
= P

(
Ti(t− 1, τ)

(
Xi,t,τ − µi,φ

)√
Ti(t− 1, τ)

≥ δ
)
.

By applying Corollary 21 in [27] we have that for all η > 0:

P

(
Ti(t− 1, τ)

(
Xi,t,τ − µi,φ

)√
Ti(t− 1, τ)

≥ δ
)
≤
⌈

log(τ)

log(1 + η)

⌉
exp

(
−2δ2

(
1− η2

16

))
≤
⌈

log(τ)

log(1 + η)

⌉
exp

(
−2ξ[log(i) + log(τ)]

(
1− η2

16

))
=

⌈
log(τ)

log(1 + η)

⌉
(iτ)

−2ξ
(

1− η2

16

)

where we consider the events of choosing arms ai as the sequence of previsible
variables.

Similarly, by exploiting the monotonicity property, we have that for each

j ≤ i∗φ and by defining δ = εi,t,Tji∗
φ

(t−1),τ

√
Tji∗φ(t− 1, τ):

P
(
ai∗φXji∗φ,t,τ ≤ ai∗φµi∗φ,φ − ai∗φεi∗φ,t,Tji∗ (t−1),τ

)
≤ P

(
ai∗φXji∗φ,t,τ ≤ ai∗φµji∗φ,φ − ai∗φεi∗φ,t,Tji∗ (t−1),τ

)
= P

(
ai∗φXji∗φ,t,τ ≥ ai∗φµji∗φ,φ + ai∗φεi∗φ,t,Tji∗ (t−1),τ

)
= P

(
Xji∗φ,t,τ − µji∗φ,φ ≥ εi∗φ,t,Tji∗ (t−1),τ

)
⌈

log(τ)

log(1 + η)

⌉
exp

(
−2δ2

(
1− η2

16

))
≤
⌈

log(τ)

log(1 + η)

⌉
exp

(
−2ξ[log(i) + log(τ)]

(
1− η2

16

))
=

⌈
log(τ)

log(1 + η)

⌉
(iτ)

−2ξ
(

1− η2

16

)

=

⌈
log(τ)

log(1 + η)

⌉
(τ)
−2ξ

(
1− η2

16

)
,

where first equality sign is due to the symmetry of the Bernoulli distribution,
the event of choosing an arm among the set {aj , . . . ai∗φ} has been chosen as the
sequence of previsible Bernoulli variables.
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Thus, the probability of the event in Equation (A.16) can be bounded by:

P
(
ai∗φX j̄∗i∗φ,t,τ

≤ ai∗φµi∗φ,φ − ai∗φεi∗φ,t,Tj̄∗i∗ (t−1),τ

)
=

⌈
log(τ)

log(1 + η)

⌉
(τ)
−2ξ

(
1− η2

16

)
,

by resorting to an union bound over all j ≤ i.
Finally, consider the event in Equation (A.18) and that Ti(t−1, τ) ≥ Ai,φ(τ):

0 ≥ ∆i,φ + aiXi,t,τ − aiX j̄i,t,τ − aiεi,t,Tj̄i(t−1),τ︸ ︷︷ ︸
≥−aiεi,t,Ti(t−1),τ

−aiεi,t,Ti(t−1),τ

≥ ∆i,φ − 2aiεi,t,Ti(t−1),τ > 0;

where the inequality is given from the fact that the SW-UCB-M algorithm
chooses the tightest bound among the aiXji,t,τ +aiεi,t,Tji(t−1),τ with 1 ≤ j ≤ i.
Since the last expression is a contradiction, the considered event does not occur.

By choosing η = 4
√

1− 1
2ξ we have 2ξ

(
1− η2

16

)
= 1 and we get:

E[Ti(Φ
′
φ)] ≤ Nφ

τ
Ai,φ(τ) + 2

∑
t∈Φ′φ

⌈
log(τ)

log(1 + η)

⌉
τ

=
Nφ
τ
Ai,φ(τ) +

2|Φ′φ|
τ

log(τ)

log(1 + η)

≤ Nφ
τ

4a2
i ξ[log(i) + log(τ)]

∆2
i,φ

+
2Nφ
τ

 log(τ)

log
(

1 + 4
√

1− 1
2ξ

)


The total regret becomes:

RN =

ΥN∑
φ=1

(
ai∗,φµi∗,φNφ −

K∑
i=1

aiµi,φE[Ti(Φφ)]

)
=

ΥN∑
φ=1

(
K∑
i=1

(ai∗,φµi∗,φ − aiµi,φ)E[Ti(Φφ)]

)

=

K∑
i=1

ΥN∑
φ=1

(ai∗,φµi∗,φ − aiµi,φ)E[Ti(Φφ)]


≤

K∑
i=1

ΥN∑
φ=1

∆i,φE[Ti(Φφ)]

 ≤ K∑
i=1

ΥN∑
φ=1

∆i,φ (τ + E[Ti(Φφ)])


≤

K∑
i=1

aiΥNτ +

ΥN∑
φ=1

∆i,φ

Nφ
τ

4a2
i ξ[log(i) + log(τ)]

∆2
i,φ

+
2Nφ
τ

 log(τ)

log
(

1 + 4
√

1− 1
2ξ

)


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Considering ∆i as defined in in the theorem statement, we obtain:

RN ≤
K∑
i=1

N
τ

4a2
i ξ[log(i) + log(τ)]

∆i
+ aiΥNτ +

2N

τ

 log(τ)

log
(

1 + 4
√

1− 1
2ξ

)

 ,

which concludes the proof.

Appendix B. Sliding Window Algorithms

In this section, we report the algorithm used in the experimental analysis of
the nonstationary case. While the algorithm SW-UCB has been proposed in [27]
and is used here as baseline, the other presented algorithms are the straightfor-
ward application of the developed bounds in the sliding windows paradigm.

We recall that the expected value of the outcome µi over the last min{τ, t}
rounds is:

Xi,t,τ =
1

Ti(t− 1, τ)

Ti(t−1)∑
s=Ti(max{t−τ,1})

Xi,s,

where Ti(t, τ) = Ti(t)− Ti(max{t− τ + 1, 1}) is the number of rounds the arm
ai has been selected in the last min{τ, t} ones and its realization is:

xi,t,τ =
1

Ti(t− 1, τ)

Ti(t−1)∑
s=Ti(max{t−τ,1})

xi,s.

Moreover, we recall that Xji,t,τ is the following convex linear combination
of the sample means Xj , . . . , Xi:

Xji,t,τ =
1

Tji(t− 1, τ)

i∑
k=j

Tk(t−1)∑
s=Tk(max{t−τ,1})

Xk,s,

where Tji(t, τ) =
∑i
k=j Tk(t − 1) − Tk(max{t − τ, 1}) is the number of rounds

one of the arms in {aj , . . . , ai} has been selected in the last min{τ, t} ones and
the realization of Xji,t,τ is denoted as follows:

xji,t,τ =
1

Tji(t− 1, τ)

i∑
k=j

Tk(t−1)∑
s=Tk(max{t−τ,1})

xk,s.

At last, the variances V i,t,τ and V ji,t,τ of the two aforementioned random

50



variables Xi,t,τ and Xji,t,τ is:

V i,t,τ =

Ti(t−1)∑
s=Ti(max{t−τ,1})

(
Xi,s −Xi,t,τ

)2
Ti(t, τ)

V ji,t,τ =

Ti(t−1)∑
s=Ti(max{t−τ,1})

(
Xk,s −Xji,t,τ

)2
Ti(t, τ)

,

respectively, and their realizations vi,t,τ and vji,t,τ :

vi,t,τ =

Ti(t−1)∑
s=Ti(max{t−τ,1})

(xi,s − xi,t,τ )
2

Tji(t− 1, τ)

vji,t,τ =

Ti(t−1)∑
s=Ti(max{t−τ,1})

(xk,s − xji,t,τ )
2

Tji(t− 1, τ)
,

respectively.
In what follows, the algorithms derived from the bound in [27] consider a

parameter ξ > 0. For ease of comparison with [27], in the experimental section
we set it to ξ = 0.6.

Appendix B.1. SW-UCB

ALGORITHM 6: SW-UCB
Initialization
Input: ξ
for t ∈ {1, . . . ,K} do

Play arm at and observe xt,1
Loop
for t ∈ {K + 1, . . . , N} do

for i ∈ {1, . . . ,K} do
Compute:

u
(SW-UCB)
i,t = xi,t,τ +

√
ξ log(min{t, τ})
Ti(t− 1, τ)

Play arm ait such that it = arg maxi∈{1,...,K} aiu
(SW-UCB)
i,t and observe

xit,Tit (t)
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Appendix B.2. SW-UCB1-M

ALGORITHM 7: SW–UCB1–M
Initialization
for t ∈ {1, . . . ,K} do

Play arm at and observe xt,1
Loop
for t ∈ {K + 1, . . . , N} do

for i ∈ {1, . . . ,K} do
Compute:

u
(SW–UCB1–M)
i,t = min

j∈{1,...,i}

{
xji,t,τ +

√
4 log(min{t, τ}) + log(i)

2Tji(t− 1, τ)

}

Play arm ait such that it = arg maxi∈{1,...,K} aiu
(SW–UCB1–M)
i,t and observe

xit,Tit (t)

Appendix B.3. SW-UCB-L

ALGORITHM 8: SW-UCB-L
Initialization
Input: µmax

for t ∈ {1, . . . ,K} do
Play arm at and observe xt,1

Loop
for t ∈ {K + 1, . . . , N} do

for i ∈ {1, . . . ,K} do
Compute:

u
(SW-UCB-L)
i,t = xi,t,τ +

√
8µmax log(min{t, τ})

Ti(t− 1, τ)

Play arm ait such that it = arg maxi∈{1,...,K} aiu
(SW-UCB-L)
i,t and observe

xit,Tit (t)
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Appendix B.4. SW-UCB-LM

ALGORITHM 9: SW–UCB–LM
Initialization
Input: µmax

for t ∈ {1, . . . ,K} do
Play arm at and observe xt,1

Loop
for t ∈ {K + 1, . . . , N} do

for i ∈ {1, . . . ,K} do
Compute:

u
(SW-UCB-LM)
i,t = min

j∈{1,...,i}

{
xji,t,τ +

√
2µmax[log(min{t, τ}) + log(i)]

Tji(t− 1, τ)

}

Play arm ait such that it = arg maxi∈{1,...,K} aiu
(SW-UCB-LM)
i,t and observe

xit,Tit (t)

Appendix B.5. SW-UCBV

ALGORITHM 10: SW-UCBV
Initialization
Input: ξ, c
for t ∈ {1, . . . ,K} do

Play arm at and observe xt,1
Loop
for t ∈ {K + 1, . . . , N} do

for i ∈ {1, . . . ,K} do
Compute:

u
(SW-UCBV)
i,t = xi,t,τ +

√
2vi,t,τξ log(min{t, τ})

Ti(t− 1, τ)
+

+
3cξ log(min{t, τ})

Ti(t− 1, τ)

Play arm ait such that it = arg maxi∈{1,...,K} aiu
(SW-UCBV)
i,t and observe

xit,Tit (t)
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Appendix B.6. SW-UCBV-M

ALGORITHM 11: SW-UCBV-M
Initialization
Input: ξ, c
for t ∈ {1, . . . ,K} do

Play arm at and observe xt,1
Loop
for t ∈ {K + 1, . . . , N} do

for i ∈ {1, . . . ,K} do
Compute:

u
(SW-UCBV-M)
i,t = min

j∈{1,...,i}

{
xji,t,τ +

√
2vji,t,τ [ξ log(min{t, τ}) + log(i)]

Tji(t− 1, τ)

+
3c[ξ log(min{t, τ}) + log(i)]

Tji(t− 1, τ)

}

Play arm ait such that it = arg maxi∈{1,...,K} aiu
(SW-UCBV-M)
i,t and observe

xit,Tit (t)
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Appendix C. Experimental Results (Detailed Tables)

-
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