
Targeting Optimization for Internet Advertising by
Learning from Logged Bandit Feedback

Margherita Gasparini, Alessandro Nuara, Francesco Trovò, Nicola Gatti, Marcello Restelli
Dipartimento di Elettronica, Informatica e Bioingegneria

Politecnico di Milano, Milano, Italy
Email: margherita.gasparini@mail.polimi.it,

{alessandro.nuara, francesco1.trovo, nicola.gatti, marcello.restelli}@polimi.it

Abstract—In the last two decades, online advertising has be-
come the most effective way to sponsor a product or an event. The
success of this advertising format is mainly due to the capability
of the Internet channels to reach a broad audience and to target
different groups of users with specific sponsored announces. This
is of paramount importance for media agencies, companies whose
primary goal is to design ad campaigns that target only those
users who are interested in the sponsored product, thus avoiding
unnecessary costs due to the display of ads to uninterested users.
In the present work, we develop an automatic method to find
the best user targets (a.k.a. contexts) that a media agency can
use in a given Internet advertising campaign. More specifically,
we formulate the problem of target optimization as a Learning
from Logged Bandit Feedback (LLBF) problem, and we propose
the TargOpt algorithm, which uses a tree expansion of the
target space to learn the partition that efficiently maximizes the
campaign revenue. Furthermore, since the problem of finding the
optimal target is intrinsically exponential in the number of the
features, we propose a tree-search method, called A-TargOpt, and
two heuristics to drive the tree expansion, aiming at providing an
anytime solution. Finally, we present empirical evidence, on both
synthetically generated and real-world data, that our algorithms
provide a practical solution to find effective targets for Internet
advertising.

I. INTRODUCTION

In the last two decades, the use of the Internet has increased
exponentially, and online advertising has become the most
effective way to sponsor a product or an event. In 2016,
companies invested more than 70 billion USD only in the US
for Internet advertising [1], with an increase of the revenue of
more than 20% with respect to the previous year. The success
of this advertising format is mainly due to the capability of
the Internet channels to reach a broad audience in a fast
and efficient way and, at the same time, to target different
groups of users with specific sponsored announces. In this
field, the main players are the advertisers, who have some
product/event to advertise, the media agencies, whose task is
to manage advertisement campaigns for the advertisers, and
the Web publishers, whose role is to provide slots in Web
pages reserved for advertising purposes. Commonly, ad slots
are allocated to the advertisers through auctions (i.e., Vickrey-
Clarke-Groves or Generalized Second Price [2]), in which
for each ad it is required to specify a bid—how much the
advertiser is willing to pay for a click on the ad—, and a budget
per day that the advertiser is willing to spend. In addition to
the search engines (e.g., Google, Bing, Yahoo!), also the social

medias (e.g., Facebook, LinkedIn) allow the display of content
interleaved with ads, and the annual spent over 2016 for social
advertising has been more than 9 billion USD (only in US).
A key to success of Internet advertising is the possibility of
targeting very accurately the ads to the users, thanks to a
huge amount of data on the users’ behavior available to the
advertisement platforms [3]. However, such amount of data
makes the problem of finding the best targeting unaffordable
for humans, thus needing automatic methods. To this purpose,
in the present paper, we develop an automatic method to find
the best user targets (a.k.a. contexts) that a media agency can
use in a given Internet advertising campaign.

An advertising campaign is structured in a number of
subcampaigns, each specifying an ad, a target, and a bid and
a daily budget. The media agencies are required to design
advertising campaigns from scratch, creating the ads (text and
banners), partitioning the user target into homogeneous groups,
and finally addressing the problem of the bid/budget optimiza-
tion for every subcampaign, whose nature is combinatorial as
showed in [4]. While the creation of the ads is usually left to
marketing experts, we focus on the joint task of selecting a
suitable target for an advertising campaign and, at the same
time, to optimize the bid/budget of each subcampaign. Such
a problem is addressed in literature as Learning from Logged
Bandit Feedback (LLBF). Nonetheless, our problem presents
two peculiarities: first, the data about users, which are available
to the media agencies, are aggregated (i.e., the behavior of a
single user cannot be perfectly tracked); second, the problem
of jointly optimizing bid and budget in a campaign is combina-
torial. The task of selecting the proper target for an advertising
campaign has been explored in the past, e.g., by [5]–[8], but
these approaches require a full track of the users’ behavior
during her Internet navigation. Furthermore, we cannot resort
to the works on LLBF [9], [10] previously available in the
literature since they do not apply to combinatorial optimization
problems such, instead, our problem is.
Original Contributions. In the present work, we formulate
the problem of target optimization as an LLBF problem,
and we propose the TargOpt algorithm, which uses a tree
expansion of the target space to learn the partition providing
the maximum number of conversions efficiently. In doing
so, we use a risk adverse approach. Furthermore, since the
problem of finding the optimal target is intrinsically expo-

nential in the number of the features, any algorithm may, in
principle, require exponential time. To cope with this issue,
we propose a tree-search method, called A-TargOpt and two
heuristics to drive the tree expansion, aiming at providing
an anytime solution. Finally, we provide empirical evidence,
on both synthetically generated and real-world data, that our
algorithms provide an effective solution to find effective targets
for Internet advertising.

II. RELATED WORKS

There exists a wide literature investigating the segmenta-
tion and selection of users based on their online shopping
behaviour [5], [6], both on social networks [7] and on search
engines [8]. In [5], the authors aim at identifying online
consumers who are most likely to purchase a specific product
for the first time in the near future after seeing an adver-
tisement. The proposed techniques are based on a multistage
transfer learning system. In [6], the authors analyse the effect
of display advertising on customer conversions, considering
individuals who visited a certain website in the past, indi-
viduals who have never visited the site but were targeted,
and individuals who have never visited the site and were not
targeted any ads about the website. In [7], the authors propose
a method to build an affinity network among users on social
networks who accessed the same content, which should also
have the same purchasing interests. Therefore, once a user in
the network is interested in a product, the ad is targeted to the
other components of her affinity network. In [8], the authors
show that the click-through-rate of an ad can be consistently
improved using segmentation of users based on Behavioral
Targeting, a technique which uses information collected about
an individual web-browsing behaviour to select which ads fit
best that user. Nonetheless, all these works assume a constant
tracking of the online activities of the user, in such a way that
when an advertiser decides the target of an ad, she can address
specific users rather than categories of users. Conversely, in the
problem we study, we cannot target one particular consumer,
not having this kind of punctual information.

The other main line of research about Internet advertis-
ing is focused on the analysis [11] or the design [12]–[16]
of new algorithms for the bid and/or budget optimization
given a fixed contextual partition of the target users. All the
aforementioned works are designed to operate in an offline
fashion. Only recently, in [4], the AdComb algorithm has been
proposed for the online joint bid/budget optimization of pay-
per-click multi-channel advertising campaigns. The authors
formulate the optimization problem as a combinatorial bandit
problem, in which they use Gaussian Processes to estimate
stochastic functions, Bayesian bandit techniques to address the
exploration/exploitation problem, and a dynamic programming
technique to solve a variation of the Multiple-Choice Knapsack
(MCK) problem. All the aforementioned methods are able to
work only if the target partition is given as input.

The more general problem of using logged bandit feedback
to provide a policy behaving differently over different contexts

to use in the future runs is tackled by [9], [10]. In [9], the au-
thors design POEM, an algorithm using counterfactual regret
minimization to estimate a linear model between features and
available actions. In [10], the RADT algorithm is proposed to
learn a decision tree which maximizes the specifically crafted
lower confidence bounds on the profit. Both these algorithms
assume the feedbacks to be generated by a classical MAB
algorithm and are not able to tackle the complexity of the
combinatorial nature of the choice we have in the problem we
study. Therefore, the algorithms previously available in the
literature cannot be directly applied to the bandit feedbacks
provided by a generic Internet advertising campaign.

III. PROBLEM FORMULATION

An Internet advertising campaign C := {s1, . . . , sN} is
described by a set of N subcampaigns si, each of which
is identified by a tuple of K features si := (zi1, . . . , ziK),
e.g., specifying the gender, age or the interests of the users
we target by the subcampaign si. Each feature zij ⊆ Zj is a
nonempty set of values characterising the subcampaign, where
Zj is the set of the feasible values for the j-th feature. For
instance, if the j-th feature corresponds to the gender, with
values M for male and F for female, we have Zj = {M,F}
as the set of feasible values, and, thus, the corresponding
feature can be zij = {M} if the subcampaign si targets only
male users, zij = {F} if it targets only the female ones,
and zij = {M,F} if it targets both. We assume that the
subcampaigns are targeting different sets of users. This implies
that, for each pair of subcampaigns in C, these are disjoint,
formally:

Definition 1: Two subcampaigns si and sk are disjoint (si∩
sk = ∅) if it exists an index j ∈ {1, . . . ,K} s.t. zij ∩ zkj = ∅.

To optimally set the target of the advertising campaign C, we
are provided with a set of logged bandit feedbacks generated
by the application of an unknown decision policy U0 over a
time horizon of length T . At a generic round t ∈ {1, . . . , T},
the policy U0 selects a bid/budget pair for each subcampaign
si ∈ C.1 Consider the following definitions:

Definition 2: A subcampaign si is called atomic if |zij | = 1
for each j ∈ {1, . . .K}, i.e., in which each feature has a single
element.

Definition 3: Given two subcampaigns si and sk we say
that si is included in or equal to sk (si ⊆ sk) if:

zij ⊆ zkj ∀j ∈ {1, . . . ,K}.
We assume to have, at each round t during which the policy U0

runs, the following information on every atomic subcampaign
si such that there is sj ∈ C with si ⊆ sj :
• bt(si) is the bid which has been selected;
• pt(si) is the amount of budget spent;
• nt(si) is the number of clicks obtained;

1We do not make any assumption on the policy U0, except that it
should provide feedback about all the possible bid/budget pairs and all the
subcampaigns si ∈ C we want to analyse for target optimization. For instance,
a policy U0 which never allocates budget on a specific subcampaign sî over
the whole time horizon does not allow the optimization of the target for sî.

• vt(si) is a cumulative revenue obtained by the conver-
sions.

Finally, there exists a function n(si, x, y) returning the average
number of clicks for a generic subcampaign si obtained when
setting bid x and budget y and a parameter v(si) denoting the
average value per click of subcampaign si.

The problem of jointly optimizing the values of the bid and
daily budget for each subcampaign of a given advertising cam-
paign C has already been addressed in [4], where the authors
cast such a problem as a MCK problem [17]. More formally,
the problem aims at finding a bid/budget pair (x(si), y(si))
for each subcampaign si such that:

J∗(C) = max
{(x(si),y(si))}Ni=1

J(C)

s.t.
N∑
i=1

y(si) ≤ B

x(si) ≤ x(si) ≤ x(si) ∀i ∈ {1, . . . N}
y(si) ≤ y(si) ≤ y(si) ∀i ∈ {1, . . . N}

where

J(C) :=

N∑
i=1

v(si)n(si, x(si), y(si))

is the revenue generated by the advertising campaign in a
single day, B is the cumulative daily budget spent for all the
subcampaigns in a day, x(si) and x(si) are the minimum and
maximum bid values available for the subcampaign si, y(si)
and y(si) are the minimum and maximum daily budget values
that can be allocated to the subcampaign si.

The optimization problem described above cannot control
the structure of the campaign C. This means that campaign
C keeps to be unchanged during the whole time horizon.
Conversely, in the present work, we face the problem of
changing the configuration of the subcampaigns to maximize
the expected objective function J∗(C). The spaceM in which
we search for the optimal configuration of subcampaigns is:
M ={C = {s1, . . . , sN} s.t. ∀i, j, i 6= j si ∪ sj = ∅},

i.e., the space of all the advertising campaigns whose subcam-
paigns are disjoint. The optimization problem we study is:

C∗ := arg max
C∈M

J∗(C).
To fulfill this goal we will make use of the information over
the time horizon T provided by the policy U0.

IV. PROPOSED METHOD

In this section, we describe an algorithm that, given a
set of bids and budgets and a cumulative budget B, finds
an advertising campaign C∗ which maximizes the expected
revenue. This will be done by an exploration of the space
M over a specifically designed tree and the use of a novel
algorithm, called Target Optimization (TargOpt) able to work
on it. In the case the space of all the possible feasible solutions
is extremely large (due to a high number of features), a
complete exploration of the space M is generally unfeasible.
Therefore, we also provide a tree search algorithm, called

Any-time Target Optimization (A-TargOpt), and effective
heuristics able to efficiently visit the space M.

A. Number of Click Function Approximation

At first, we discretize of the bid/budget space. For the sake
of concision and without loss of generality, we adopt the same
discretization grid over the bid/budget space for all the atomic
subcampaigns s. Specifically, we have x(s) = x > 0, x(s) =
x, y(s) = y > 0 and y(s) = B, and we use a uniform grid
over the bid/budget space X × Y as follows:

X =

{
x+

h

Nx
(x− x)

}Nx

h=0

,

Y =

{
y +

h

Ny
(y − y)

}Ny

h=0

,

where Nx ∈ N+ and Ny ∈ N+ determine the granularity
of the discretization for the bid and budget, respectively.
Furthermore, we use lower bounds on the number of clicks in
place of the empirical average value. Indeed, the maximization
of the empirical average is not a suitable criterion to design
a policy [18], since it might be arbitrarily far from the actual
expected value. Instead, lower bounds take into account the
uncertainty that affects the actual value, providing a risk-averse
policies that minimize the probability of realizing a very low
revenue or even a loss.

We compute the lower bounds n(si, x, y) and v(si) for
the number of clicks n(si, x, y) and the click values vi(si),
respectively, with a given confidence δ, for each bid/budget
pair in X × Y as follows. Let us focus on the number
of clicks. Given a subcampaign si, we compute a function
n(si, x, y, δ) that, for each element (x, y) ∈ X × Y , returns
a lower bound holding with probability δ on the number
of clicks n(si, x, y). This task is solved by the algorithm
proposed in [4], where the estimation of the number of clicks
is performed by means of Gaussian Processes [19]. More
specifically, the number of clicks n(si, x, y) corresponding
to a specific bid/budget pair (x, y) ∈ X × Y is modeled as
a Gaussian distribution, whose parameters, mean µ(si, x, y)
and variance σ2(si, x, y), are estimated relying on historical
observations (bt(si), pt(si), nt(si))

T
t=1.2 The lower bound on

the number of clicks is computed as:
n(si, x, y) := µ̂(si, x, y)− zδσ̂(si, x, y),

where µ̂(si, x, y) is the estimates for the mean, σ̂(si, x, y) is
the estimates of the standard deviation and zδ the quantile
of order δ of the standard Gaussian distribution. The same
methodology can be applied to estimate a lower bound v(si)
on the value v(si) of subcampaign si resorting to the sequence
of samples (vt(ci))

T
t=1. See [4] for details. We underline that

the procedure to obtain lower bounds we describe above can be
substituted by any other suitable procedure. For instance, one
can adopt a procedure using only historical data on a specific
bid/budget pair (x, y) to estimate the lower bound n(si, x, y)
employing, e.g., the Hoeffding bound [20].

2In this section, we summarize the procedure to estimate the number of
clicks, and we refer to [4] for technical details.

Moreover, we remove the dependency of our optimization
problem on the bid x by finding the best bid for every
campaign si and every value of the daily budget y. We denote
by n(si, y) the lower bound on the number of clicks of
campaign si when the daily budget is y and the best bid is
used, formally:

n(si, y) := max
x∈X

n(si, x, y).

In the next section, we denote the function returning the (lower
bounds of the) revenue generated by a subcampaign si with:

P (si, y) := v(si)n(si, y). (1)

B. Tree Construction and Optimization

Let us define two operators working with campaigns and
subcampaigns used in what follows.

Definition 4: Given a campaign Ci ∈M and a subcampaign
sj we say that Ci is included in sj (Ci ⊆ sj) if:

∀sk ∈ Ci sk ⊆ sj .
Definition 5: Given a subcampaign sj and a feature index

f ∈ {1, . . . ,K}, the partition operator D := d(sj , f) returns
the set D of all the possible campaigns that can be generated
by partitioning the sub-campaign sj w.r.t. the feature xjf .
Formally, D := {C1, . . . , Cpart(xjf)} s.t. each Ci ⊆ sj and
∀sk ∈ Ci xih = xjh,∀h 6= f , where part(xjf) is the number
of partitions of the set xjf .
For instance, given a subcampaign sj = {{M,F}, {Y,A}}—
where the features are gender (M for male, F for female)
and age (Y for young, A for adult)—and index f = 1,
the partition operator d(sj , f) returns D = {{s1, s2}, {s3}},
where s1 = ({M}, {Y,A}), s2 = ({F}, {Y,A}), and
s3 = ({M,F}, {Y,A}). This means that D is composed
of two campaigns, the first composed, in its turn, of two
subcampaigns, the second composed of a single subcampaign.

We use the tree T := (E ,O), composed of two different sets
of nodes: an even level nodes set E := {Ei}, in which each
node Ei corresponds to a different campaign, and an odd level
nodes set O := {Oj}, in which each node Oj corresponds to
a subcampaign which is a child to some even node Ei. Each
level of the tree corresponds to a single feature. The even
levels nodes Ei := (Ci, Childi, fi,Ji, Argi) and odd levels
nodes Oj := (sj , Childj , fj ,Jj , Argj) are defined as tuples
in which:
• Ci is a campaign;
• sj is a subcampaign;
• Childi and Childj are the sets of the children nodes;
• fi, fj ∈ {0, . . . ,K} are feature indexes indicating the

level of the node and, at the same time, which feature
has been selected;

• Ji := (Ji(y))y∈Y ,Jj = (Jj(y))y∈Y , is the vector of the
lower bound of the revenues for each y ∈ Y (initially
empty, which is used in the optimization procedure);

• Argi, Argj ∈ MNy is a vector of campaigns (initially
empty, which is used in the optimization procedure).

The root of the tree T is the node E0 =
(C, Child0, 0,J0, Arg0), where C := {s1, . . . , sN} is the
original advertising campaign, sj ∈ C are its subcampaigns,

E0

O1

E1

O3 O4

E2

O5

O2

E3

O6 O7

E4

O8

Fig. 1. An example of a tree representing a completely expanded adver-
tising campaign, in which the original campaign C had two subcampaigns
s1 = ({M}, {Y,A}) and s2 = ({F}, {Y,A}), where the subcampaigns
are defined by gender (M for Male, F for Female) and age (Y for Young,
A for Adult).

and the set of children nodes Child0 is composed of odd
nodes Oj = (sj , Childj , 0,Jj , Argj). Given a non-atomic
subcampaign sj , the set of the children Childj of a generic
odd node Oj = (sj , Childj , fj ,Jj , Argj) is composed of
the even nodes Ei = (Ci, Childi, fj + 1,Ji, Argi) s.t. the
campaign Ci is in D = d(sj , fj). Instead, if sj is atomic,
Childj is empty, meaning that Oj is a leaf. Given a campaign
Ci, the set of the children Childi of a generic even node
Ei = (Ci, Childi, fi,Ji, Argi) is composed of odd nodes
Oj = (sj , Childj , fi,Jj , Argj) in which sj is one of the
subcampaigns contained in Ci. The construction of the tree
T consists in the successive expansion of the root node E0

until no odd node can be expanded further.
In Figure 1, we show an example of a completely expanded

tree T , generated starting from the campaign C = {s1, s2},
with s1 = ({M}, {Y,A}) and s2 = ({F}, {Y,A}). The
root of the tree E0 (even rectangular node) corresponds to
the original campaign C, and its children nodes O1 and
O2 (circular odd nodes) corresponds to the subcampaigns
s1 and s2, respectively. The next level contains the nodes
representing all the possible campaigns and subcampaigns that
can be generated by partitioning the target of the subcam-
paigns s1 for O1 and s2 for O2. More specifically, nodes
O3 and O4 correspond to subcampaign s3 = ({M}, {Y })
and s4 = ({M}, {A}), respectively, node E1 corresponds to
campaign C1 = {s3, s4}; node O5 corresponds to subcampaign
s5 = s1 and E2 corresponds to campaign C2 = {s5}; nodes
O6 and O7 correspond to subcampaign s6 = ({F}, {Y }) and
s7 = ({F}, {A}), respectively and node E3 corresponds to
campaign C3 = {s6, s7}; node O8 corresponds to subcampaign
s8 = s2 and E4 corresponds to campaign C4 = {s8}.

We describe TargOpt algorithm to find the campaign max-
imizing the revenue. The algorithm traverses the tree from
the leaves to the root and computes the lower bound of the
revenue for each campaign in T . The pseudocode of the
TargOpt algorithm is presented in Algorithm 1. It takes as
input a tree T = (E ,O) and it returns the optimal campaign
C∗. The algorithm starts from the lowermost level of the tree
(l = K) and applies the procedure OddNodeUpdate(Oj),
detailed in what follows, for all the odd nodes Oj s.t. fj = l
(Line 6). This procedure fills the vector Jnew with the revenues

Algorithm 1 TargOpt Algorithm
1: Input: tree T = (E ,O)
2: Output: campaign C∗
3: l← K
4: while l ≥ 0 do
5: for all Oj ∈ O | fj = l do
6: Jnew, Argnew ← OddNodeUpdate(Oj)
7: Oj ← (sj , Childj , fj ,Jnew, Argnew)

8: for all Ei ∈ E | fi = l do
9: J ′new, Arg

′
new ← EvenNodeUpdate(Ei)

10: Ei ← (Ci, Childi, fi,J ′new, Arg′new)

11: l← l − 1

12: C∗ ← Arg0(B)
13: return C∗

corresponding to each budget y ∈ Y and the corresponding
campaign Argnew, i.e., a vector containing campaigns which
provides the revenues in Jnew. The nodes are then updated
to include this new information (Line 7). After that, these
results are used to update the even nodes Ei s.t. fi = l
with the subroutine EvenNodeUpdate(Ei) (Line 9), detailed
in what follows. The subroutine aggregates the revenues Jj
provided by the children Oj ∈ Childi, executing a variation
of the MCK solving algorithm. Indeed, it provides the vector
of the lower bounds on the revenue J ′new and the vector of the
campaigns Arg′new corresponding to those revenues for each
budget y ∈ Y . After that, the algorithm updates each analysed
even node Ej (Line 10). The procedure moves to the upper
level (l← l − 1) and iterates until it reaches the root (l = 0),
where it returns the campaign Arg0(B), contained in the root
node E0, corresponding to the optimal revenue J0(Y) given
a total budget of B.

The pseudocode of the subroutine EvenNodeUpdate(Ei)
is presented in Algorithm 2. It is a variation of the dynamic-
programming algorithm used to solve the MCK problem [17]
specifically crafted for our scenario. Given an even node Ei
it computes the vector of the optimal lower bound of the
revenue Jnew corresponding to each budget y ∈ Y and the
corresponding vector of campaigns Argnew. At first, it sets
null revenue and empty optimal campaign for all the budgets
y ∈ Y (Lines 3-5). After that, it analyses each odd node
Oj in the set of the children Childi and evaluates for each
budget y ∈ Y whether the lower bound of the revenue Jj(y)
provided by the campaign sj in the child Oj is better than
any other one computed so far, or whether there exists an
allocation of budgets over more than one subcampaign that can
perform better (Line 10). Then, it stores in Argnew(y) the set
of subcampaigns which is providing the largest lower bound
on the revenue Jj(y) for the budget y (Lines 12-18). Once
this process is repeated for all the nodes Oj ∈ Childi, the
subroutine returns the vector of the largest lower bound on the
revenue Jnew and the vector of the corresponding campaigns
Argnew (Line 19).

The subroutine OddNodeUpdate is provided in Algo-

Algorithm 2 EvenNodeUpdate Subroutine
1: Input: even node Ei
2: Output: vector of the lower bounds of the revenues Jnew,

vector of the campaigns Argnew
3: Jnew ← 0
4: for y ∈ Y do
5: Argnew(y)← ∅
6: for Oj ∈ Childi do
7: Jold ← Jnew
8: Argold ← Argnew
9: for y ∈ Y do

10: y∗ = arg max
y′∈Y,y′≤y

[Jold(y
′) + Jj(y − y′)]

11: Jnew(y) = Jold(y
∗) + Jj(y − y∗)]

12: if y∗ = 0 then
13: Argnew(y) = Argj(y)
14: else
15: if y∗ = y then
16: Argnew(y) = Argold(y)
17: else
18: Argnew(y)← Argold(y) ∪Argj(y)

19: return Jnew, Argnew

Algorithm 3 OddNodeUpdate Subroutine
1: Input: odd node Oj
2: Output: vector of the lower bounds of the revenues Jnew,

vector of the campaigns Argnew
3: if Childj = ∅ then
4: for y ∈ Y do
5: Jnew(y)← P (sj , y)
6: Argnew(y)← sj

7: else
8: for y ∈ Y do
9: i∗ ← arg maxi|Ei∈Childj Ji(y)

10: Jnew(y)← J∗i (y)
11: Argnew(y)← Argi∗(y)

12: return Jnew, Argnew

rithm 3. It requires as input an odd node Oj . If Oj does not
have any child, the subroutine fills each element of the vector
of the lower bounds of the revenue Jnew(y) using the function
P (sj , y) defined in Equation (1) (Lines 3-6). Conversely, if the
set of the children Childj is not empty , the vector Jnew is
computed by choosing for each y ∈ Y the maximum value
of the revenue Ji(y) among the even nodes Ei ∈ Childj
(Lines 8-11). The subroutine also stores the campaign vector
Argnew, whose elements are the one providing the revenues
in the vector Jnew. At last, it returns the vector of the lower
bound of the revenue Jnew and the vector of the campaigns
Argnew (Line 12).

C. Approximated Algorithm for Large Feature Space

In the case the feature space is such that K � 1, the
expansion of the tree T up to the atomic subcampaigns might

be computationally expensive, since the number of the odd
nodes scales as O(2|Z|K), where |Z| := minj |Zj | is the
minimum cardinality of the subcampaign features. To perform
the target optimization also when the execution of the TargOpt
algorithm is unfeasible, we design a variation of the TargOpt
algorithm that, starting from a tree composed only by the root
node E0, iteratively expands the nodes in a classical tree-
search fashion.

Algorithm 4 A-TargOpt Algorithm
1: Input: campaign C, maximum number of nodes to expand
Nmax.

2: Output: best campaign discovered C∗
3: O ← {(si, ∅, 0, ∅, ∅)}Ni=1

4: E ← {(C, {O1, . . . ON}, 0, ∅, ∅)}
5: C∗ ← TargOpt((E ,O))
6: while |O| < Nmax do
7: L ← {Ok ∈ O |Childk = ∅}
8: Select Oj ← H(L)
9: D ← d(sj , fj + 1)

10: Childj ← ∅
11: for C ∈ D do
12: Child← ∅
13: for ŝ ∈ C do
14: O ← (ŝ, ∅, fj + 1, ∅, ∅)
15: Child← O ∪O
16: O ← O ∪ Child
17: E ← (C, Child, fj + 1, ∅, ∅)
18: Childj ← Childj ∪ E
19: E ← E ∪ E
20: O ← O \Oj
21: Oj = (sj , Childj , fj , ∅, ∅)
22: O ← O ∪Oj
23: C∗ = TargOpt((E ,O))

24: return C∗

The pseudocode of our algorithm, called A-TargOpt, is
presented in Algorithm 4. It takes as input a campaign C and
a maximum number of odd nodes Nmax ∈ N to expand.3 At
first, the algorithm initializes the tree with an odd node for
each subcampaign in C (Line 3) and a single even node E0

for the original campaign (Line 4). In the case the expansion is
already too computationally expensive for the available budget
(|O| > Nmax), it executes the TargOpt algorithm on T to
provide a tentative solution C∗ (Line 5). At each iteration,
it expands the more promising nodes according to a strategy
function H(L), which takes a set of odd leaf nodes L, i.e., the
odd nodes Ok ∈ O s.t. Childk = ∅, and returns a single odd
node Oj ∈ L which will be expanded. Here, we propose two
different strategies H(·) we adopt to select the more promising
node to be expanded:

3We limit the number of the odd nodes since they are the most computa-
tionally expensive, being those that execute the algorithm solving the MCK
problem.

• Breadth-First Search (BFS), which in our specific setting
consists in expanding one of the nodes with the largest
target, i.e., Oj ∈ L s.t. @Ok ∈ L s.t. fk < fj ;

• Optimistic Search (OS), which expands the nodes with
the maximum average revenue or, formally, Oj ∈ L
s.t. j = arg maxh

∑
y∈Y Jh(y)

Ny
.

Once an odd node Oj has been chosen (Line 8), the algorithm
uses the partition operator D = d(sj , fj) to expand the
subcampaign sj (Line 9). Moreover, it generates and adds
in Childj all the even nodes E = (C, Child, fj + 1, ∅, ∅)
corresponding to campaigns in D (Lines 17-18) and it adds
to the child set Child each node E all the odd nodes O
corresponding to the subcampaign ŝ ∈ C̄ (Lines 13-15).
Finally, the algorithm adds to the tree T the newly generated
node and its children (Lines 19-22), and executes the TargOpt
algorithm on the updated version of the tree. These operations
are repeated until the tree T has at most Nmax odd nodes.

V. EXPERIMENTAL EVALUATION

We experimentally evaluate our algorithm on both real-
world and synthetic problems. At first, we show the im-
provement provided by the TargOpt algorithm on a real-
world advertising problem and, after that, we evaluate the
performance of the A-TargOpt algorithm in a synthetically
generated environment.

A. Evaluation in a Real-world Setting

Experimental Setting. We evaluate the TargOpt algorithm
on a real-world dataset, provided by the company Media-
Matic [21]. The database corresponds to an advertising cam-
paign for a financial product, whose name is omitted for
privacy reasons.4 The original campaign C is composed of
N = 8 subcampaigns. The dataset we use for the experiments
consists of the data recorded from 01/09/17 to 08/11/17, for
a total of T = 69 days. The (single) feature zi1 that we analyze
in this experiment is the hour of the day the ad is displayed
to users. More specifically, for this feature, we consider a
set of |Z1| = 8 values corresponding to 3-hours-long time
slots (0.00 a.m.-3.00 a.m., 3.01 a.m.-6.00 a.m., etc.). A finer
granularity would make the optimization problem intractable.
Since a preliminary analysis suggests that the behaviour of
users is different during weekdays and weekends, e.g., the
total volumes of the search are significantly different between
the twos, we separate the gathered data to apply the TargOpt
algorithm independently to the two scenarios. The policy used
for the collection of the data is the AdComb algorithm [4],
where we set a budget B = 1100, while we discretize the
bid space evenly in (x, x) = (0.1, 5) with |X| = 50 values,
and the budget space evenly in (y, y) = (2, 1100) with
|Y | = 550 possible budgets. We use the same discretization
of the bid/budget space also while executing the TargOpt
algorithm. We compare the optimal campaign C∗, resulting

4To fulfill the NDA we have with the media agency, some of the values
reported in what follows of the experiment have been scaled, given that the
transformation we applied does not change the conclusion we draw.

600 700 800 900 1,000 1,100

15

20

25

B̄

J
0
(B

)
C
C∗

Fig. 2. Revenue of the TargOpt on the real-world dataset for the weekdays.

from the execution of the TargOpt algorithm, with the one
provided by the original campaign C. The performance index
we use to evaluate the performance of the two campaigns is
the lower bound on the revenue J0(Y), where we assume a
unitary value for the conversion.
Results. The results of the experiments are presented in
Figure 2 for the weekdays and Figure 3 for the weekends. In
both the cases, the TargOpt algorithm provides a significant
improvement over the original campaign C∗, i.e., about 13%
more conversions during the weekdays and about 30% during
the weekend. This improvement does not reduce as the budget
invested per day B increases. In the weekend scenario, the
revenue for campaign C is almost constant for B ≥ 230
(J0(B) ≈ 9). This phenomenon is due to the fact that, as
we increase the total daily budget, part of what is spent
is targeting subcampaigns in which no conversion occurs,
therefore even by increasing the budget we do not have any
further conversion. This issue is partially overcome with the
use of a more fine-grained targeting provided by the campaign
C∗, whose performance are bounded to J0(B) ≈ 12 for
B ≥ 260. We suppose that an even finer-grained targeting, e.g.,
using 1-hour-long slots, could further improve the performance
of the optimal advertising campaign.

B. Evaluation in a Synthetically Generated Setting

Experimental Setting. In this experiment, we compare the
performance of the proposed exploration strategies for the
A-TargOpt algorithm in a synthetically generated setting.
The original campaign C = {s0} is composed of a single
subcampaign s0 having K = 3 features, each of which has
cardinality 3. Given an advertising period of T = 100 days,
we generate for each day t ∈ {1, . . . , T} and for each atomic
subcampaign si ⊆ s0, the daily observations about the selected
bid bt(si), selected budget pt(si), number of clicks nt(si)
and cumulative value obtained by the conversions vt(si), in
the following way. For each atomic campaign si, the policy
U0 selects a budget pt(si) uniformly over Y = {0, . . . , 100},
with |Y | = 10, and keeps the bid bt(si) = c constant during
the period and the subcampaigns. This provides an average
number of 10 observations for each subcampaign and each
budget. For each subcampaign si and for each day t, the

100 150 200 250 300

6

8

10

12

B̄

J
0
(B

)

C
C∗

Fig. 3. Revenue of the TargOpt on the real-world dataset for the weekends.

daily number of clicks is computed as nt(si) := pt(si)
cpct(si)

,
where the cost per click cpct(si) is extracted from N (0.5, 0.1)
and N (µ, σ) is the Gaussian distribution with mean µ and
standard deviation σ. We generate the cumulative value ob-
tained by the conversions vt(si) as vt(si) := cr(si)nt(si)
where the conversion rate cr(si) for an atomic subcampaign
si is extracted from 0.5B(0.5), being B(µ) the Bernoulli
distribution of parameter µ. This cumulative value model-
ing exemplifies the case in which, on average, half of the
atomic subcampaigns is not profitable at all. From the data
corresponding to each atomic subcampaign si we estimate the
lower bound on the number of clicks n(si, y) as described in
Section IV-A. Moreover, the lower bound on the number of
clicks n(sj , y) corresponding for the non-atomic subcampaign
sj is computed by aggregating the observations of those atomic
subcampaigns s.t. si ⊆ sj and computing the lower bound as
in Section IV-A.5

In the execution of the A-TargOpt algorithm, we set a
total budget to spend of B = 100 and a number of budget
Ny = 10. As for performance index, we use the lower bound
of the revenue J0(B) obtained at the end of the procedure.
We compare the performance of our two heuristics with a
baseline, called Random Strategy (RS), which expands the
node by selecting at random from the leaf nodes. We average
the results over 200 independent runs.
Results. The results of the synthetically generated setting
are provided in Figure 4. It is possible to see that for 200 ≤
Nmax ≤ 700 there is statistical evidence that the BFS and OS
heuristics are performing better than the RS one. Conversely,
with a few nodes (Nmax < 200) or when the tree is almost
completely expanded (Nmax > 700) there is no significant
difference among the performance of the three heuristics. This
suggests that our two heuristics provide an advantage when
the problem allows the expansion of a considerable portion
of the tree, while if we explore only a few nodes, a random
exploration might be valid as well.

5The aggregation of the data as performed in this experiment is correct
under the assumption that all the atomic subcampaigns si interacted with the
same number of users, thus they contributes to the data of subcampaigns sj
in the same way.

0 200 400 600 800 1,000

9.1

9.2

9.3

Nmax

J
0
(B

)

BFS
OS
RS

Fig. 4. Revenue obtained by the BFS, OP and RS heuristics by setting
a different number of maximum nodes to expand Nmax. 95% confidence
interval are represented as error bars.

In general, looking at the average performance, one should
follow the OS heuristic when expanding the nodes, since it is
always providing the largest revenue on average. Nonetheless,
the heuristic BFS provides solutions which are more compact
than OS since the BFS heuristic builds the subcampaigns
trying to keep their targets as the large as possible. There-
fore, if the marketing experts require a limited number of
subcampaigns, e.g., to perform further business analysis on
the advertising campaign, the BFS heuristic is to be preferred,
while, if we are more concerned about the revenue, we should
rely on the OS heuristic when expanding the tree T .

VI. CONCLUSIONS

We design a new method to define the optimal target of an
advertising campaign, which exploits the information gathered
from past interactions between a set of users and the adver-
tising campaign, in the form of logged bandit feedback, to
estimate the performance of all the possible subcampaigns in
the target space and select the campaign providing maximum
revenue. We propose the TargOpt algorithm, which follows
the risk-averse framework, to solve the optimization problem
to explore completely the target space M. Moreover, in the
case the dimension of the target space is too large, we provided
the A-TargOpt algorithm, which allows to iteratively expand
the space we analyse, and two different heuristics to explore
the target space M effectively, thus providing an anytime
version of the TargOpt algorithm. Finally, we showed on
both synthetically generated and real-world datasets that the
proposed algorithms provide an increase in the revenue gained
from the advertising campaign.

An interesting future work is the study of a criterion to
decide what is the optimal number of days T after which
we run one of the proposed algorithms. Another extension to
what has been proposed here is the inclusion of the target
optimization procedure in an online learning framework.

ACKNOWLEDGMENTS

We would like to thank Mediamatic, part of the Marketing
Multimedia group, for supporting this research.

REFERENCES

[1] P. Coopers, “Iab internet advertising revenue report,” 2016.
[Online]. Available: https://www.iab.com/wp-content/uploads/2016/04/
IAB Internet Advertising Revenue Report FY 2016.pdf

[2] A. Mas-Colell, M. D. Whinston, J. R. Green et al., Microeconomic
theory. Oxford university press New York, 1995, vol. 1.

[3] T. Raeder, O. Stitelman, B. Dalessandro, C. Perlich, and F. Provost,
“Design principles of massive, robust prediction systems,” in Proceed-
ings of the ACM conference on knowledge discovery and data mining
(SIGKDD), 2012, pp. 1357–1365.

[4] A. Nuara, F. Trovò, N. Gatti, and M. Restelli, “A combinatorial-bandit
algorithm for the online joint bid/budget optimization of pay-per-click
advertising campaigns,” in Proceedings of the Conference on Artificial
Intelligence (AAAI), 2018.

[5] C. Perlich, B. Dalessandro, T. Raeder, O. Stitelman, and F. Provost,
“Machine learning for targeted display advertising: Transfer learning in
action,” Machine learning, vol. 95, no. 1, pp. 103–127, 2014.

[6] O. Stitelman, B. Dalessandro, C. Perlich, and F. Provost, “Estimating
the effect of online display advertising on browser conversion,” Pro-
ceedings of the workshop on Data Mining and Audience Intelligence
for Advertising (ADKDD), vol. 8, 2011.

[7] F. Provost, B. Dalessandro, R. Hook, X. Zhang, and A. Murray,
“Audience selection for on-line brand advertising: privacy-friendly social
network targeting,” in Proceedings of the ACM international conference
on knowledge discovery and data mining (SIGKDD), 2009, pp. 707–716.

[8] J. Yan, N. Liu, G. Wang, W. Zhang, Y. Jiang, and Z. Chen, “How much
can behavioral targeting help online advertising?” in Proceedings of the
ACM conference on world wide web (WWW), 2009, pp. 261–270.

[9] A. Swaminathan and T. Joachims, “Batch learning from logged bandit
feedback through counterfactual risk minimization.” Journal of Machine
Learning Research, vol. 16, no. 1, pp. 1731–1755, 2015.

[10] F. Trovò, S. Paladino, P. Simone, M. Restelli, and N. Gatti, “Risk-
averse trees for learning from logged bandit feedback,” in Proceedings of
the IEEE International Joint Conference on Neural Networks (IJCNN),
2017, pp. 976–983.

[11] C. Perlich, B. Dalessandro, R. Hook, O. Stitelman, T. Raeder, and
F. Provost, “Bid optimizing and inventory scoring in targeted online
advertising,” in Proceedings of the ACM international conference on
knowledge discovery and data mining (SIGKDD), 2012, pp. 804–812.

[12] S. Thomaidou, K. Liakopoulos, and M. Vazirgiannis, “Toward an
integrated framework for automated development and optimization of
online advertising campaigns,” Intelligent Data Analysis, vol. 18, no. 6,
pp. 1199–1227, 2014.

[13] J. Xu, K.-c. Lee, W. Li, H. Qi, and Q. Lu, “Smart pacing for effective
online ad campaign optimization,” in Proceedings of the ACM interna-
tional conference on knowledge discovery and data mining (SIGKDD),
2015, pp. 2217–2226.

[14] S. C. Geyik, A. Saxena, and A. Dasdan, “Multi-touch attribution based
budget allocation in online advertising,” in Proceedings of the workshop
on data mining for online advertising (ADKDD), 2014, pp. 1–9.

[15] N. Archak, V. Mirrokni, and S. Muthukrishnan, “Budget optimization
for online advertising campaigns with carryover effects,” in Proceedings
of the ad auctions workshop, 2010.

[16] W. Zhang, Y. Zhang, B. Gao, Y. Yu, X. Yuan, and T.-Y. Liu, “Joint
optimization of bid and budget allocation in sponsored search,” in Pro-
ceedings of the ACM international conference on Knowledge discovery
and data mining (SIGKDD), 2012, pp. 1177–1185.

[17] H. Kellerer, U. Pferschy, and D. Pisinger, The Multiple-Choice Knapsack
Problem. Springer, 2004, pp. 317–347.

[18] A. Sani, A. Lazaric, and R. Munos, “Risk-aversion in multi-armed
bandits,” in Proceedings of the Conference on Neural Information
Processing Systems (NIPS), 2012, pp. 3275–3283.

[19] C. E. Rasmussen and C. K. Williams, Gaussian processes for machine
learning. MIT Press, 2006, vol. 1.

[20] W. Hoeffding, “Probability inequalities for sums of bounded random
variables,” Journal of the American statistical association, vol. 58, no.
301, pp. 13–30, 1963.

[21] M. Multimedia, “Mediamatic,” 2018. [Online]. Available: http:
//www.mediamatic.it/

