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Abstract

Combinatorial bandits (CMAB) are a generalization of the well-known Multi-Armed Bandit
framework, in which the learner chooses, at each round, a subset of the available arms that
satisfies some known constraints. The learner observes the payoffs of each chosen arm and
aims at maximizing the cumulative reward. We study, for the first time, CMAB settings
with some form of correlation over the arms expected rewards. The arm correlation is
crucial to allow algorithms to be effective when the space of the arms is large. In the
present paper, we propose a bandit algorithm, namely Gaussian Combinatorial Bandit
(GCB), designed for settings in which the arms are partitioned in subsets, and the payoff
functions of the arms of each subset are jointly distributed as a Gaussian Process (GP).
We provide two different variations of our algorithm (frequentist and Bayesian) that, under
mild assumptions, their worst-case regret is Õ(C

√
N), where C is the number of subsets

of arms whose payoffs are correlated and N is the number of rounds.1

1. Introduction

The Multi-Armed Bandit (MAB) settings (Bubeck et al., 2012) have been proven to be a
powerful tool to tackle real-world problems in which decisions are taken sequentially. In
these settings, a learner chooses, at each round, an option among a set of available ones,
usually called arms, and she receives a stochastic reward associated with the chosen arm.
The learner aims at minimizing the expected loss, called regret, incurred due to the lack
of a priori information on the arm maximizing the expected reward. Thanks also to their
successful adoption in many real-world applications, MAB algorithms have been achieving
great popularity in the last years. In our work, we focus on a class of problems called
Combinatorial MAB (CMAB). The peculiarity of CMAB is that the learner chooses at each
round a subset of arms, called super-arms, subject to a set of constraints (e.g., knapsack
constraints), observes the payoffs of every single arm belonging to the chosen super-arm,
and gets the corresponding reward. Usually, the constraints have combinatorial nature, thus
making the optimization problem NP-hard. The CMAB algorithms developed so far, e.g.,
by (Chen et al., 2013), (Gai et al., 2010), (Shleyfman et al., 2014), (Ontañón, 2017), aim at
exploiting the correlation among the super-arms due to the potential non-null intersection
of the subsets of arms of different super-arms. These algorithms are then paired with exact
or approximation oracles solving the optimization problem.

1. With the notation Õ we disregard logarithmic factors.
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In several challenging applications, the space of the arms of a CMAB setting may be
large, making the learning process inefficient unless some form of correlation among the
expected payoffs can be exploited. This happens, e.g., in the optimization of an Inter-
net advertising campaign (Nuara et al., 2018), in which the problem consists in finding
the bid/daily budget pair for every subcampaign maximizing the number of total daily
conversions (e.g., clicks or purchases) s.t. the total daily spent is not larger than a given
budget. For every subcampaign, there is a set of arms representing a discretization of the
2-dimensional bid/daily budget joint space. This space presents some form of regularity, as
the number of conversions changes smoothly when the bid or/and the daily budget vary.
Another application fitting the CMAB framework is the allocation of cells in a 5G net-
work (Maghsudi and Hossain, 2016). The problem consists in powering a subset of cells
to provide a fast connection to the largest portion of users, while keeping the energy costs
under a threshold and the correlation is induced by the spatial nature of the problem.

In the present paper, we provide the first CMAB algorithm with theoretical guarantees
exploiting the correlation existing among the expected payoffs of the arms. In particular,
we study a specific CMAB setting, that we call Gaussian Process-CMAB (GP-CMAB), in
which the space of the arms is partitioned in subsets of arms such that the payoff functions
of the arms of every subset are jointly distributed as a Gaussian Process (GP). We propose
two variations of the GCB algorithm, namely GCB-UCB and GCB-TS, based on the use
of upper confidence bounds and a posterior sampling procedure, respectively. For each
variation of our algorithm, we provide a high-probability regret of Õ(C

√
N), where C is

the number of the subsets of correlated arms and N is the number of rounds.

2. The GP-CMAB Setting

A GP-CMAB problem consists of a finite set D of M arms, which is partitioned into C
disjoint subsets of arms D1, . . . ,DC . Each subset Di := {ai1, . . . ,aiMi} is composed of
Mi ∈ N arms aij ∈ Rd, where d ∈ N+ is the dimension of each arm. Each subset Di is
characterized by an expected payoff function µi : Di → R, which is the realization of a
GP (Rasmussen and Williams, 2006). At every round t over a finite time horizon N , the
learner pulls a super-arm St ∈ S, where the set S ⊆ 2D is a subset of the power set of D that
satisfies some constraints on the super-arm composition. Once the learner has chosen the
super-arm St, she observes a noisy realization from the payoff function yt(a) := µi(a)+εt(a)
for each arm a ∈ St ∩Di and for each i ∈ {1, . . . C}, where εt(a) ∼ N (0, σ2) for each t and
a, and σ2 ∈ R+. Finally, she earns a reward Rt(St) = f(St, {yt(a)}a∈St) which depends
on the chosen super-arm St and on the payoffs yt(a). In the simplest case, f is the sum of
the payoffs of the arms in St, i.e., Rt(St) =

∑
a∈St

yt(a) (the modeling also allows for more
complex definitions of the reward). Let us define rµ(S) := E[Rt(S)] as the expected reward
of a super-arm S and µ := (µ11, . . . , µCMC

), µ ∈ RM , with µij := µi(aij), as the vector of
the expected values of the payoffs. We assume that the following properties hold.

Assumption 1 (Monotonicity) The expected reward rµ(S) is monotonically non de-
creasing in µ, i.e., given µ,η ∈ RM s.t. µij ≤ ηij , ∀(i, j) we have rµ(S) ≤ rη(S) ∀S ∈ S.

Assumption 2 (Lipschitz continuity) The expected reward rµ(S) is Lipschitz continu-
ous in the infinite norm w.r.t. the expected payoff vector µ, with Lipschitz constant Λ > 0.
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Formally, for each µ,η ∈ RM we have |rµ(S) − rη(S)| ≤ Λ||µ − η||∞, where the infinite
norm of an expected payoff vector is ||µ||∞ := maxi∈{1,...,C}maxj∈{1,...,Mi} |µij |.

These two assumptions assure that the expected reward rµ(S) does not decrease when we
increase at least one of elements in the expected payoffs vector and that rµ(S) is Lipschitz
continuous w.r.t. the expected payoff vector µ. The goal of the learner is to find the
optimal expected reward r∗µ = maxS∈S rµ(S). We assume that the learner has access to an
approximation oracle able to solve approximately this optimization problem.

Definition 1 ((α, β)-Approximation Oracle) Given α, β ∈ [0, 1], an (α, β)-Approximation
Oracle Ŝ = Oracle(µ), with input the payoff vector µ and output the super-arm Ŝ ∈ S:

P
[
rµ(Ŝ) ≥ α r∗µ

]
≥ β.

A policy U is an algorithm that selects a super-arm St at round t with the aim to minimize
the loss due to the learning process. Since we only assume to have an approximation oracle,
we need to define the expected pseudo-regret taking into account the suboptimality of the
solution returned by the oracle as follows:

Definition 2 ((α, β)-Approximation Pseudo-Regret) Given the expected payoff vector
µ and an (α, β)-Approximation Oracle, the (α, β)-Approximation Pseudo-Regret RN (U)
after N rounds of a given policy U that selects the super-arm St at round t is defined as:

RN (U) = N αβ r∗µ − E

[
N∑
t=1

rµ(St)

]
.

We assume µ to be unknown to the learner, so the policy U needs to build estimates from
the GPs to find a good approximation of µ and of rµ(S) for any super-arm S ∈ S, while
keeping the pseudo-regret RN (U) due to this exploration as small as possible.

3. Gaussian Processes and Information Gain

A Gaussian Process GP (µi(a), ki(a,a
′)) is a collection of random variables, whose law

is a multivariate Gaussian. It is specified by its mean function µi(a) and covariance (or
kernel) ki(a,a

′) ≤ 1, where a,a′ are elements of Di. We focus on the following kernels,
being the most common: linear kernel ki(a,a

′) = aTa′; squared exponential ker-

nel ki(a,a
′) = exp

{
− ||a−a

′||22
2l2i

}
, where li is a lengthscale; Matérn kernel ki(a,a

′) =

(21−νi/Γ(νi))r
νiBνi(r), with r =

√
2νi
w ||a − a

′||2, where Bνi(r) is the modified Bessel func-
tion of the 2nd kind, Γ(νi) is the gamma function and νi ∈ R+ is a smoothness parameter.

In what follows, we use GPs to approximate the unknown payoff functions µi. More
specifically, we assume a prior distribution of GP (0, ki(a,a

′)) for an unknown function,
which allow us to compute the posterior distribution by an analytic solution. Formally, we
have that, given a sequence of t observations of the payoff function y(Ai,t) := [µi(ai,1) +
ε1, . . . , µi(ai,t)+εt]

T corresponding to the sequence of the chosen arms Ai,t := [ai,1, . . . ,ai,t],
where ai,h ∈ Di is an arm from the subset Di pulled at round h and εh ∼ N (0, σ2) are
uncorrelated Gaussian noises, the posterior mean and variance for a ∈ Di are:
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Algorithm 1: GCB

Data: Set of arms D, noise variance σ2, GP Prior distributions µ̂i,0 and σ̂2
i,0 for all i ∈ {1, . . . , C}

1 for t ∈ {1, . . . , N} do
2 for i ∈ {1, . . . , C} do
3 for a ∈ Di do
4 Compute µ̂i,Ti(t−1)(a) as in Equation (1)
5 Compute σ̂2

i,Ti(t−1)(a) as in Equation (2)

6 Compute ui,Ti(t−1)(a) as in Equation (3) or θi,Ti(t−1)(a) as in Equation (4)

7 Generate the vector µ̄t

8 Select super-arm St = Oracle(µ̄t)
9 Observe the payoffs yt(a) for each a ∈ St

10 for i ∈ {1, . . . , C} do
11 Update the sequences y(Ai,Ti(t−1)) and Ai,Ti(t−1), if necessary

µ̂i,t(a) = ki,t(a)T(Ki,t + σ2I)−1y(Ai,t), (1)

σ̂2
i,t(a) = ki(a,a)− ki,t(a)T(Ki,t + σ2I)−1ki,t(a), (2)

where ki,t(a) := [ki(ai,1,a), . . . , ki(ai,t,a)]T is the vector of the covariance between a and
the arms in Ai,t, Ki,t is the Gram matrix and I is the identity matrix of order t.

The problem of selecting the sequence of arms Ai,t whose payoff realizations y(Ai,t)
maximize the information on this function is already known in the literature as Bayesian
experimental design (Chaloner and Verdinelli, 1995), where the Information Gain is used
to measure how much information on µi is gained by sampling a sequence of arms Ai,t.
Given the vector y(Ai,t), Srinivas et al. (2010) show that the Information Gain in the case
µi is a realization of a GP is defined as I(y(Ai,t) |µi) := 1

2 log |I +σ−2Ki,t|. Therefore, our
problem is equivalent to finding a sequence of arms Ai,t s.t. ai,h ∈ Di for each h ∈ {1, . . . , t}
of length t providing the maximum information gain γi,t := maxAi,t|ai,h∈Di

I (y(Ai,t) |µi).
However, the Greedy procedure proposed by Ko et al. (1995) to solve this problem does not
provide guarantees on the pseudo-regret RN (U).

4. The GCB Algorithm

Our algorithm, called Gaussian Combinatorial Bandit (GCB), employs a set of GPs to esti-
mate the payoff functions µi with i ∈ {1, . . . , C}. Then, the estimated payoffs for each arm
in D are fed to the approximation oracle which chooses the super-arm St to play at round t.
The pseudo-code of GCB is provided in Algorithm 1. The algorithm requires as input the set
of arms D, the time horizon N and a prior for each one of the GPs µi specified by the mean
function µ̂i,0 and the covariance function σ̂2

i,0. At round t, the algorithm computes estimates
for the expected payoff for each arm a ∈ D (Lines 4-5). To do so, the algorithm relies on the
observed payoff vector y(Ai,Ti(t−1)) corresponding to the arms in Ai,Ti(t−1) selected during
the previous rounds, where Ti(t − 1) is the number of arms observed up to round t − 1 in
the set Di. Using y(Ai,Ti(t−1)), the posterior of the GP corresponding to the subset Di for
an arm a ∈ Di is a Gaussian distribution with mean µ̂i,Ti(t−1)(a) as in Equation (1) and
variance σ̂2

i,Ti(t−1)(a) as in Equation (2). Such a model provides a probability distribution
for each expected payoff, which is not directly employable in the approximation oracle,
that, instead, needs a single value per expected payoff vector. We cope with this issue using
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two different approaches (Line 6): the first follows the frequentist framework computing an
upper bound of the mean reward ui,Ti(t−1)(a), while the second one follows the Bayesian
framework drawing a sample θi,Ti(t−1)(a) from the posterior distribution. Formally, we
have:

ui,Ti(t−1)(a) := µ̂i,Ti(t−1)(a) +
√
bi,Ti(t−1)σ̂i,Ti(t−1)(a), (3)

θi,Ti(t−1)(a) ∼ N
(
µ̂i,Ti(t−1)(a), σ̂2

i,Ti(t−1)(a)
)
, (4)

where bi,Ti(t−1) is any non-negative sequence of values. From now on, we will refer to the
version of the GCB algorithm that uses upper confidence bounds as GCB-UCB and the one
resorting to sampling as GCB-TS (since it takes inspiration from the Thompson Sampling).

With either the values computed with Equation (3) or (4), the algorithm generates the
estimated payoff vector µ̄t :=

(
µ̄1,Ti(t−1)(a11), . . . , µ̄C,Ti(t−1)(aCMC

)
)
, µ̄t ∈ RM (Line 7)

either using the upper bounds µ̄i,Ti(t−1)(a) := ui,Ti(t−1)(a) or the samples from the distri-
butions µ̄i,Ti(t−1)(a) := θi,Ti(t−1)(a). Then, the algorithm runs the (α, β)-Approximation
Oracle on the estimated payoff vector µ̄t to obtain the super-arm St to play in the next
round (Line 8). Finally, the algorithm observes the payoffs yt(sth) for each sth ∈ St (Line 9),
and updates the payoffs y(Ai,Ti(t−1)) and selected arms Ai,Ti(t−1) sequences (Line 11).

5. Finite-Time Regret Analysis

We show that the worst-case pseudo-regret of the GCB algorithm is upper bounded as
follows. The proofs are reported in Appendix A.1 and A.2.

Theorem 1 Given δ ∈ (0, 1), if we set bi,n := 2 log
(
CNMiπn

δ

)
, πn being a sequence

s.t.
∑∞

t=1
1
πt

= 1 and πt > 0, and given an (α, β)-Approximation Oracle, the pseudo-regret
of the GCB-UCB algorithm RN (U) running on a GP-CMAB problem over N rounds is

upper bounded with probability at least 1 − δ by
√
c̄ CNBNM

∑C
i=1 γi,NMi, where Bn :=

2 log
(
CNMπn

δ

)
, and c̄ := 8Λ2

log (1+σ−2)
.

Theorem 2 Given δ ∈ (0, 1) and an (α, β)-Approximation Oracle, the pseudo-regret of the
GCB-TS RN (U) algorithm running on a GP-CMAB problem over N rounds is upper bounded

with probability at least 1 − δ by
√
c̄ CNB′NM

∑C
i=1 γi,NMi, where B′n := 8 log

(
2CNMπn

δ

)
,

πn is a sequence such that
∑∞

t=1
1
πt

= 1 and πt > 0, and c̄ := 2(αβ+1)2Λ2

log (1+σ−2)
.

The upper bounds provided by Theorems 1 and 2 are expressed in terms of the max-
imum information gain γi,NMi one might obtain over the different GPs. The problem of
bounding such terms has been already discussed by (Srinivas et al., 2010), where the au-
thors present the bounds for linear kernel γi,t = O(d log t); squared exponential kernel
γi,t = O((log t)(d+1)); Matérn kernel γi,t = O(td(d+1)/(2ν+d(d+1)) log t), if ν > 1.

Our GCB algorithm suffers from a sublinear pseudo-regret when the above bounds on
the information gain are employed. For instance, in the case of the squared exponential
kernel, the term

∑C
i=1 γi,NMi in Theorems 1 and 2 can be bounded by O(C log(NM)(d+1)).

If we choose πn ∝ 1
n2 , we obtain a pseudo-regret upper bound of:
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RN (U) = O
(
C
√
N log (CN3M3)(log (NM))(d+1)

)
.

Note that the bound scales linearly in the number of subsets C, but only logarithmically
in the number of arms M . Therefore, our algorithm is suitable for those problems in which
M is large, but they can be grouped into a few subsets (a single one in the best case) in
which the arm payoffs are correlated.

6. Related Works

(Nuara et al., 2018) propose a CMAB algorithm, called AdComb, which employs GPs for the
online optimization of Internet advertising campaigns. The AdComb algorithm is a specific
case of our GCB algorithm. While an experimental evaluation of AdComb algorithm is
provided, showing the different performance of the frequentist and Bayesian versions, no
theoretical guarantees are known. (Degenne and Perchet, 2016) propose an algorithm for
the setting in which a sub-Gaussian correlation among the payoff realizations exists. Their
results are not comparable with the one provided here, in which the correlation is among
expected payoffs.

Other related works on CMAB, not exploiting forms of correlation, are the following.
(Chen et al., 2013) propose CUCB, which relies on statistical upper confidence bounds for
bounded domain payoffs, showing an upper bound of O(M logN). Our algorithm also ap-
plies to problems in which there is not any known upper bound on the payoffs and suffers
from a worse pseudo-regret in terms of N and a better pseudo-regret in terms of M ; this
allows for its employment in challenging problems with a huge number of arms. (Ontañón,
2017) and (Shleyfman et al., 2014) propose the näıve sampling and LSI algorithms, respec-
tively, to tackle a specific CMAB setting in which the reward function of a super-arm is a
linear combination of the arms. While the former algorithm suffers from a pseudo-regret
O(N), for the latter one no theoretical guarantee is provided.

Other works related to ours can be found in the (non-combinatorial) MAB literature.
More precisely, (Srinivas et al., 2010) propose the GP-UCB algorithm that employs GPs in a
stochastic MAB setting. The pseudo-regret of the algorithm is proved to be upper bounded
in high probability as Õ(

√
N). Our GCB algorithm extends this work to the more challenging

combinatorial settings and presents the same upper bound on the pseudo-regret Õ(
√
N).

Instead, the Bayesian version of our GCB algorithm, when applied to (non-combinatorial)
MAB settings, is the first Bayesian MAB algorithm employing GPs.

7. Conclusions

In this paper, we present GCB: an algorithm able to exploit the correlation among the
expected payoffs of the arms in a GP-CMAB setting. This algorithm makes use of the
existing GP structure to spread the information provided by the sampled payoff over the arm
space. We provided a finite time analysis of the GCB algorithm, giving a high probability
upper bound on the pseudo-regret of order Õ(C

√
N), where C is the number of subsets

presenting the GP structure and N is the time horizon.
Some interesting future works will concern the introduction of monotonicity assumptions

for some of the input variables to tighten the bound, as well as the generalization of the
results for continuous arm spaces. At last, an experimental campaign should be performed
to evaluate the empiric performance of the two flavors of the GCB algorithm.
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Appendix A. Appendix: Proofs

In what follows we provide the proofs of the two theorems we provided in the main paper.

A.1 Proof of Theorem 1

Proof This proof is partially inspired by the proof of Theorem 1 in (Srinivas et al., 2010).
Be r ∼ N (0, 1) and c ∈ R+, we have:

P[r > c] =
1√
2π
e−

c2

2

∫ ∞
c

e−
(r−c)2

2
−c(r−c) dr

≤ e−
c2

2 P[r > 0] =
1

2
e−

c2

2 ,

since e−c(r−c) ≤ 1 for r ≥ c. For the symmetry of the Gaussian distribution, we have:

P[|r| > c] ≤ e−
c2

2 . (5)

Given a generic sequence of elements Ai,t coming from a single subset Di and a corre-
sponding sequence of payoffs y(Ai,t), we have that µij ∼ N (µ̂i,t(aij), σ̂

2
i,t(aij)). Thus, once

substituted r =
µij−µ̂i,t(aij)
σ̂i,t(aij) and c =

√
bi,t in Equation (5), we obtain:

P
[
|µij − µ̂i,t(aij)| >

√
bi,tσ̂i,t(aij)

]
≤ e−

bi,t
2 . (6)

In a GP-CMAB setting, after n rounds, each arm can be chosen a number of times
from 1 to n, therefore 1 ≤ Ti(n) ≤ nMi. Applying the union bound over the rounds
(n ∈ {1, . . . , N}), the subsets of D (Di with i ∈ {1, . . . , C}), the number of times the arms
in Di are chosen (t ∈ {1, . . . , nMi}) and the available arms in Di (aij ∈ Di), and exploiting
Equation (6), we obtain:

P

 ⋃
n,i,t,aij

(
|µij − µ̂i,t−1(aij)| >

√
bi,tσ̂i,t−1(aij)

) (7)

≤
N∑
n=1

C∑
i=1

nMi∑
t=1

Mie
−

bi,t
2 . (8)

Thus, choosing bi,t = 2 log
(
CNMiπt

δ

)
, we obtain:

N∑
n=1

C∑
i=1

nMi∑
t=1

Mie
−

bi,t
2 ≤

C∑
i=1

NMi∑
t=1

N∑
n=1

Mie
−

bi,t
2

=

C∑
i=1

NMi∑
t=1

NMi
δ

CNMiπt
≤ δ

C∑
i=1

(
1

C

∞∑
t=1

1

πt

)
= δ.

Therefore, for each n ≥ 1, we know that with probability at least 1 − δ the following
holds for all aij ∈ Di, i ∈ {1, . . . C} and Ti(n− 1) ∈ {1, . . . , nMi}:

|µij − µ̂i,Ti(n−1)(aij)| ≤
√
bi,Ti(n−1)σ̂i,Ti(n−1)(aij). (9)
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The instantaneous pseudo-regret regn at round n satisfies the following inequality:

regn = αβr∗µ − rµ(Sn)

≤ αβr∗µ − rµ̄n(Sn) + rµ̄n(Sn)− rµ(Sn). (10)

Let us focus on the term rµ̄n(Sn). The following holds with probability at least β:

rµ̄n(Sn) ≥ α r∗µ̄n
≥ α rµ̄n(S∗µ) ≥ α rµ(S∗µ) = α r∗µ, (11)

where S∗µ ∈ arg maxS∈S(rµ(S)) is the super-arm providing the optimum expected reward
when the expected payoffs are µ. In Equation (11) we exploit the fact that we have an
(α, β)-approximation oracle and the definition of r∗µ̄n

and the monotonicity property of the
expected reward (Assumption 1), being (µ̄n)ij ≥ µij , ∀i, j. Since the approximation oracle
guarantees an α approximation with probability β, on average the expected reward is:

rµ̄n(Sn) ≥ αβ r∗µ + (1− β)ε ≥ αβ r∗µ ∀ε ≥ 0. (12)

Plugging the result of Equation (12) into Equation (10), the first two terms cancel out
and we get:

regn ≤ rµ̄n(Sn)− rµ(Sn)

≤ rµ̄n(Sn)− rµn(Sn) + rµn(Sn)− rµ(Sn), (13)

where µn :=
(
µ̂1,T1(n−1)(a11), . . . , µ̂C,TC(n−1)(aCMC

)
)

is the vector composed of the esti-
mated average payoffs for each arm a ∈ D. We use the Lipschitz property of the ex-
pected reward function (see Assumption 2) to bound the terms (rµ̄n(Sn) − rµn(Sn)) and
(rµn(Sn)− rµ(Sn)) appearing in Equation (13) as follows:

rµ̄n(Sn)− rµn(Sn) = Λ||µ̄n − µn||∞

= Λ max
i∈{1,...,C}

(√
bi,Ti(n−1) max

a∈Di

σ̂i,Ti(n−1)(a)

)
(14)

≤ Λ
√
BnM max

i∈{1,...,C}

(
max
a∈Di

σ̂i,Ti(n−1)(a)

)
(15)

≤ Λ
√
BnM

C∑
i=1

(
max
a∈Di

σ̂i,Ti(n−1)(a)

)
, and (16)

rµn(Sn)− rµ(Sn) ≤ Λ||µn − µ||∞

≤ Λ
√
BnM

C∑
i=1

(
max
a∈Di

σ̂i,Ti(n−1)(a)

)
. (17)

Equation (14) holds by the definition of µ̄n. In Equation (15), we exploit that bi,Ti(n−1) =

2 log
(
CN maxiMiπTi(n−1)

δ

)
≤ 2 log

(
CNMπnM

δ

)
= BnM . Equation (16) holds since the max-

imum over a set is not greater than the sum of the elements of the set, if they are all
non-negative. Finally, Equation (17) directly follows from Equation (9). Plugging Equa-
tions (16) and (17) into Equation (13), we obtain:

regn ≤ 2Λ
√
BnM

C∑
i=1

(
max
a∈Di

σ̂i,Ti(n−1)(a)

)
. (18)
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We need now to upper bound σ̂i,Ti(n−1)(a). Consider a realization µi of a GP over Di and
recall that, thanks to Lemma 5.3 in (Srinivas et al., 2010), under the Gaussian assumption
we can express the information gain provided by y(Ai,t) corresponding to the sequence of
arms Ai,t as:

I(y(Ai,t) |µi) =
1

2

t∑
h=1

log
(
1 + σ−2 σ̂2

i,h−1(ai,h)
)
. (19)

Since bi,h is non-decreasing in h, we can write:

σ̂2
i,h−1(ai,h) = σ2

(
σ−2 σ̂2

i,h−1(ai,h)
)

≤
log
(

1 + σ−2 σ̂2
i,h−1(ai,h)

)
log (1 + σ−2)

, (20)

since s2 ≤ σ−2 log (1+s2)
log(1+σ−2)

for all s ∈ [0, σ−1], and σ−2 σ̂2
i,h−1(ai,h) ≤ σ−2 k(ai,h,ai,h) ≤ σ−2.

Since Equation (20) holds for any a ∈ Di and for any i ∈ {1, . . . C}, then it also holds
for the arm amax maximizing the variance σ̂2

i,h−1(ai,h) in µi defined over Di. Thus, setting

c̄ = 8 Λ2

log(1+σ−2)
and exploiting the Cauchy-Schwarz inequality, we obtain:

R2
N (U) ≤ N

N∑
n=1

reg2
n

≤ 4Λ2N
N∑
n=1

BnM

[
C∑
i=1

(
max
a∈Di

σ̂i,Ti(n−1)(a)

)]2

≤ 4Λ2N

N∑
n=1

[
BNMC

C∑
i=1

max
a∈Di

σ̂2
i,Ti(n−1)(a)

]

≤ c̄ CNBNM
C∑
i=1

1

2

N∑
n=1

max
a∈Di

log
(

1 + σ−2σ̂2
i,Ti(n−1)(a)

)
= c̄ C N BNM

C∑
i=1

max
Ai,Ti(N)|ai,h∈Di

I(y(Ai,Ti(N)) |µi)

≤ c̄ C N BNM

C∑
i=1

γi,NMi .

We conclude the proof by taking the square root on both the r.h.s. and the l.h.s. of the last
inequality.

A.2 Proof of Theorem 2

Proof Consider a sequence of arms Ai,t and their corresponding payoff realizations y(Ai,t).

Replacing r =
µ̂i,t(aij)−θi,t(aij)

σ̂i,t(aij) and c =
√
b′i,t in Equation (5), where b′i,t := 8 log

(
2CNMiπn

δ

)
,

we obtain:

P
[
|µ̂i,t(aij)− θi,t(aij)| >

√
b′i,tσ̂i,t(aij)

]
≤ e−

b′i,t
2 .
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By relying on the triangle inequality, we derive:

P
{
|µij − θi,t(aij)| >

√
b′i,tσ̂i,t(aij)

}
≤ P [|µij − µ̂i,t(aij)|+

|µ̂i,t(aij)− θi,t(aij)| >
√
b′i,tσ̂i,t(aij)

]
≤ P

[
|µij − µ̂i,t(aij)| >

1

2

√
b′i,tσ̂i,t(aij)

]
+

+ P
[
|µ̂i,t(aij)− θi,t(aij)| >

1

2

√
b′i,tσ̂i,t(aij)

]
≤ 2e−

b′i,t
8 = δ.

Similarly to what done in Equations (7)-(8), applying the union bound over the rounds, the
subsets of D, the number of times the arms are chosen in Di, and the available arms, we
have that the following holds with probability at least 1− δ:

|µij − θi,Ti(n−1)(aij)| ≤
√
b′i,Ti(n−1)σ̂i,Ti(n−1)(aij), (21)

for all aij ∈ Di, i ∈ {1, . . . C} and Ti(n − 1) ∈ {1, . . . , nMi}. The instantaneous pseudo-
regret regn at round n is:

regn = αβr∗µ − rµ(Ŝn)

= αβr∗µ − αβrθn(S∗µ) + αβrθn(S∗µ)− rµ(Ŝn), (22)

where θn := (θ1,T1(n−1)(a11), . . . , θC,TC(n−1)(aCMC
)) is the vector of the drawn payoffs for

the turn n.
Since Equation (12) holds even for GCB-TS, we have that rθn(Ŝn) ≥ αβrθn(S∗µ) and the

instantaneous pseudo-regret in Equation (22) becomes:

regn ≤ αβ
(
rµ(S∗µ)− rθn(S∗µ)

)
+ rθn(Ŝn)− rµ(Ŝn)

≤ αβΛ||µ− θn||∞ + Λ||θn − µ||∞ (23)

≤ (αβ + 1)Λ max
i∈{1,...,C}

(√
b′i,Ti(n) max

a∈Di

σ̂i,Ti(n−1)(a)

)
. (24)

Equation (23) holds by Assumption 2. Equation (24) holds with probability at least 1− δ
for Equation (21). Exploiting the definition of B′n, we obtain:

regn ≤ (αβ + 1)Λ
√
B′nM

C∑
i=1

(
max
a∈Di

σ̂i,Ti(n−1)(a)

)
,

which is equal to Equation (18) apart from constants. The part of the proof of Theorem 1
that follows Equation (18) can be applied here since it only requires that B′n is monotoni-
cally non-decreasing in n and this property holds by definition of B′n. As a result, we obtain
the same bound of Theorem 1 apart from constants.
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